240 research outputs found

    Interimsveje, armeret med geotextil

    Get PDF

    Development of Pore Pressure and Material Damping during Cyclic Loading

    Get PDF

    One million years of glaciation and denudation history in west Greenland

    Get PDF
    The influence of major Quaternary climatic changes on growth and decay of the Greenland Ice Sheet, and associated erosional impact on the landscapes, is virtually unknown beyond the last deglaciation. Here we quantify exposure and denudation histories in west Greenland by applying a novel Markov-Chain Monte Carlo modelling approach to all available paired cosmogenic (10)Be-(26)Al bedrock data from Greenland. We find that long-term denudation rates in west Greenland range from >50 m Myr(−1) in low-lying areas to ∼2 m Myr(−1) at high elevations, hereby quantifying systematic variations in denudation rate among different glacial landforms caused by variations in ice thickness across the landscape. We furthermore show that the present day ice-free areas only were ice covered ca. 45% of the past 1 million years, and even less at high-elevation sites, implying that the Greenland Ice Sheet for much of the time was of similar size or even smaller than today

    Universal phase transitions of B1 structured stoichiometric transition-metal carbides

    Full text link
    The high-pressure phase transitions of B1-structured stoichiometric transition metal carbides (TMCs, TM=Ti, Zr, Hf, V, Nb, and Ta) were systematically investigated using ab initio calculations. These carbides underwent universal phase transitions along two novel phase-transition routes, namely, B1\rightarrowdistorted TlI (TlI')\rightarrowTlI and/or B1\rightarrowdistorted TiB (TiB')\rightarrowTiB, when subjected to pressures. The two routes can coexist possibly because of the tiny enthalpy differences between the new phases under corresponding pressures. Four new phases result from atomic slips of the B1-structured parent phases under pressure. After completely releasing the pressure, taking TiC as a representative of TMCs, only its new TlI'-type phase is mechanically and dynamically stable, and may be recovered.Comment: [email protected]

    Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015

    Get PDF
    SummaryBackground The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 provides an up-to-date synthesis of the evidence for risk factor exposure and the attributable burden of disease. By providing national and subnational assessments spanning the past 25 years, this study can inform debates on the importance of addressing risks in context. Methods We used the comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2015. This study included 388 risk-outcome pairs that met World Cancer Research Fund-defined criteria for convincing or probable evidence. We extracted relative risk and exposure estimates from randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. We developed a metric that allows comparisons of exposure across risk factors—the summary exposure value. Using the counterfactual scenario of theoretical minimum risk level, we estimated the portion of deaths and DALYs that could be attributed to a given risk. We decomposed trends in attributable burden into contributions from population growth, population age structure, risk exposure, and risk-deleted cause-specific DALY rates. We characterised risk exposure in relation to a Socio-demographic Index (SDI). Findings Between 1990 and 2015, global exposure to unsafe sanitation, household air pollution, childhood underweight, childhood stunting, and smoking each decreased by more than 25%. Global exposure for several occupational risks, high body-mass index (BMI), and drug use increased by more than 25% over the same period. All risks jointly evaluated in 2015 accounted for 57·8% (95% CI 56·6–58·8) of global deaths and 41·2% (39·8–42·8) of DALYs. In 2015, the ten largest contributors to global DALYs among Level 3 risks were high systolic blood pressure (211·8 million [192·7 million to 231·1 million] global DALYs), smoking (148·6 million [134·2 million to 163·1 million]), high fasting plasma glucose (143·1 million [125·1 million to 163·5 million]), high BMI (120·1 million [83·8 million to 158·4 million]), childhood undernutrition (113·3 million [103·9 million to 123·4 million]), ambient particulate matter (103·1 million [90·8 million to 115·1 million]), high total cholesterol (88·7 million [74·6 million to 105·7 million]), household air pollution (85·6 million [66·7 million to 106·1 million]), alcohol use (85·0 million [77·2 million to 93·0 million]), and diets high in sodium (83·0 million [49·3 million to 127·5 million]). From 1990 to 2015, attributable DALYs declined for micronutrient deficiencies, childhood undernutrition, unsafe sanitation and water, and household air pollution; reductions in risk-deleted DALY rates rather than reductions in exposure drove these declines. Rising exposure contributed to notable increases in attributable DALYs from high BMI, high fasting plasma glucose, occupational carcinogens, and drug use. Environmental risks and childhood undernutrition declined steadily with SDI; low physical activity, high BMI, and high fasting plasma glucose increased with SDI. In 119 countries, metabolic risks, such as high BMI and fasting plasma glucose, contributed the most attributable DALYs in 2015. Regionally, smoking still ranked among the leading five risk factors for attributable DALYs in 109 countries; childhood underweight and unsafe sex remained primary drivers of early death and disability in much of sub-Saharan Africa. Interpretation Declines in some key environmental risks have contributed to declines in critical infectious diseases. Some risks appear to be invariant to SDI. Increasing risks, including high BMI, high fasting plasma glucose, drug use, and some occupational exposures, contribute to rising burden from some conditions, but also provide opportunities for intervention. Some highly preventable risks, such as smoking, remain major causes of attributable DALYs, even as exposure is declining. Public policy makers need to pay attention to the risks that are increasingly major contributors to global burden. Funding Bill & Melinda Gates Foundation

    Biodistribution of gold nanoparticles in mouse lung following intratracheal instillation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The fate of gold nanoparticles, 2, 40 and 100 nm, administered intratracheally to adult female mice was examined. The nanoparticles were traced by autometallography (AMG) at both ultrastructural and light microscopic levels. Also, the gold content was quantified by inductively coupled plasma mass spectrometry (ICP-MS) and neutron activation analysis (NAA). The liver is the major site of deposition of circulating gold nanoparticles. Therefore the degree of translocation was determined by the hepatic deposition of gold. Mice were instilled with 5 intratracheal doses of gold nanoparticles distributed over a period of 3 weeks and were killed 24 h after the last dose. One group of mice were given a single intratracheal dose and were killed after 1 h.</p> <p>Results</p> <p>The instilled nanoparticles were found in lung macrophages already 1 h after a single instillation. In mice instilled treated repeatedly during 3 weeks, the load was substantial. Ultrastructurally, AMG silver enhanced gold nanoparticles were found in lysosome-/endosome-like organelles of the macrophages and analysis with AMG, ICP-MS and NAA of the liver revealed an almost total lack of translocation of nanoparticles. In mice given repeated instillations of 2 nm gold nanoparticles, 1.4‰ (by ICP-MS) to 1.9‰ (by NAA) of the instilled gold was detected in the liver. With the 40 nm gold, no gold was detected in the liver (detection level 2 ng, 0.1‰) except for one mouse in which 3‰ of the instilled gold was found in the liver. No gold was detected in any liver of mice instilled with 100 nm gold (detection level 2 ng, 0.1‰) except in a single animal with 0.39‰ of the dose in the liver.</p> <p>Conclusion</p> <p>We found that that: (1) inert gold nanoparticles, administered intratracheally are phagocytosed by lung macrophages; (2) only a tiny fraction of the gold particles is translocated into systemic circulation. (3) The translocation rate was greatest with the 2 nm gold particles.</p

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure
    corecore