281 research outputs found

    Sulfite reduction in mycobacteria

    Get PDF
    Mycobacterium tuberculosis places an enormous burden on the welfare of humanity. Its ability to grow and its pathogenicity are linked to sulfur metabolism, which is considered a fertile area for the development of antibiotics, particularly because many of the sulfur acquisition steps in the bacterium are not found in the host. Sulfite reduction is one such mycobacterium-specific step and is the central focus of this paper. Sulfite reduction in Mycobacterium smegmatis was investigated using a combination of deletion mutagenesis, metabolite screening, complementation, and enzymology. The initial rate parameters for the purified sulfite reductase from M. tuberculosis were determined under strict anaerobic conditions [kcat = 1.0 (Β±0.1) electron consumed per second, and Km(SO3βˆ’2) = 27 (Β±1) ΞΌM], and the enzyme exhibits no detectible turnover of nitrite, which need not be the case in the sulfite/nitrite reductase family. Deletion of sulfite reductase (sirA, originally misannotated nirA) reveals that it is essential for growth on sulfate or sulfite as the sole sulfur source and, further, that the nitrite-reducing activities of the cell are incapable of reducing sulfite at a rate sufficient to allow growth. Like their nitrite reductase counterparts, sulfite reductases require a siroheme cofactor for catalysis. Rv2393 (renamed che1) resides in the sulfur reduction operon and is shown for the first time to encode a ferrochelatase, a catalyst that inserts Fe2+ into siroheme. Deletion of che1 causes cells to grow slowly on metabolites that require sulfite reductase activity. This slow-growth phenotype was ameliorated by optimizing growth conditions for nitrite assimilation, suggesting that nitrogen and sulfur assimilation overlap at the point of ferrochelatase synthesis and delivery

    Isolation and Expression of a Gene Cluster Responsible for Biosynthesis of the Glycopeptidolipid Antigens of \u3cem\u3eMicobacterium avium\u3c/em\u3e

    Get PDF
    Bacteria within the Mycobacterium avium complex are prominent in the environment and are a source of serious disseminated infections in patients with AIDS. Serovars of the M. avium complex are distinguished from all other mycobacteria and from one another by the presence of highly antigenic glycolipids, the glycopeptidolipids, on their surfaces. A genomic library of DNA from serovar 2 of the M. avium complex was constructed in the Escherichia coli-Mycobacterium shuttle cosmid, pYUB18, and used to clone and express in Mycobacterium smegmatis the genes responsible for the biosynthesis of the oligosaccharide segment of the M. avium serovar 2-specific glycopeptidolipid. The responsible gene cluster was mapped to a 22- to 27-kb functional region of the M. avium genome. The recombinant glycolipid was also isolated by high-pressure liquid chromatography and chemically characterized, by gas chromatography-mass spectrometry and fast atom bombardment-mass spectrometry, to demonstrate that the lipopeptide core originated in M. smegmatis, whereas the oligosaccharide segment arose from the cloned M. avium genes. This first-time demonstration of the cloning and expression, in a nonpathogenic mycobacterium, of the genes encoding complex cell wall glycoconjugates from a pathogenic mycobacterium presents a new approach for studying the role of such products in disease processes

    Use of In Vivo Complementation in \u3cem\u3eMycobacterium tuberculosis\u3c/em\u3e to Identify a Genomic Fragment Associated with Virulence

    Get PDF
    Novel molecular tools and genetic methods were developed to isolate genomic fragments of Mycobacterium tuberculosis that may be associated with virulence. We sought to restore virulence, a characteristic of M. tuberculosis that is correlated with growth rate in mouse spleen and lung tissue, to the avirulent strain H37Ra by complementation. A representative library of the virulent M. tuberculosis strain H37Rv was constructed and transformed into H37Ra. Enrichment for individual faster-growing recombinants was achieved by passage of pools of H37Ra transformants harboring the H37Rv library through mice. A molecular strategy was devised to isolate and clone the H37Rv genomic DNA fragment ivg, which conferred a more rapid in vivo growth rate to H37Ra

    Fluoromycobacteriophages for rapid, specific, and sensitive antibiotic susceptibility testing of Mycobacterium tuberculosis

    Get PDF
    Rapid antibiotic susceptibility testing of Mycobacterium tuberculosis is of paramount importance as multiple- and extensively- drug resistant strains of M. tuberculosis emerge and spread. We describe here a virus-based assay in which fluoromycobacteriophages are used to deliver a GFP or ZsYellow fluorescent marker gene to M. tuberculosis, which can then be monitored by fluorescent detection approaches including fluorescent microscopy and flow cytometry. Pre-clinical evaluations show that addition of either Rifampicin or Streptomycin at the time of phage addition obliterates fluorescence in susceptible cells but not in isogenic resistant bacteria enabling drug sensitivity determination in less than 24 hours. Detection requires no substrate addition, fewer than 100 cells can be identified, and resistant bacteria can be detected within mixed populations. Fluorescence withstands fixation by paraformaldehyde providing enhanced biosafety for testing MDR-TB and XDR-TB infections. Β© 2009 Piuri et al

    The Complete Genome Sequence of the Emerging Pathogen Mycobacterium haemophilum Explains Its Unique Culture Requirements

    Get PDF
    Mycobacterium haemophilum is an emerging pathogen associated with a variety of clinical syndromes, most commonly skin infections in immunocompromised individuals. M. haemophilum exhibits a unique requirement for iron supplementation to support its growth in culture, but the basis for this property and how it may shape pathogenesis is unclear. Using a combination of Illumina, PacBio, and Sanger sequencing, the complete genome sequence of M. haemophilum was determined. Guided by this sequence, experiments were performed to define the basis for the unique growth requirements of M. haemophilum. We found that M. haemophilum, unlike many other mycobacteria, is unable to synthesize iron-binding siderophores known as mycobactins or to utilize ferri-mycobactins to support growth. These differences correlate with the absence of genes associated with mycobactin synthesis, secretion, and uptake. In agreement with the ability of heme to promote growth, we identified genes encoding heme uptake machinery. Consistent with its propensity to infect the skin, we show at the whole-genome level the genetic closeness of M. haemophilumwith Mycobacterium leprae, an organism which cannot be cultivated in vitro, and we identify genes uniquely shared by these organisms. Finally, we identify means to express foreign genes in M. haemophilum. These data explain the unique culture requirements for this important pathogen, provide a foundation upon which the genome sequence can be exploited to improve diagnostics and therapeutics, and suggest use of M. haemophilum as a tool to elucidate functions of genes shared with M. leprae. IMPORTANCE Mycobacterium haemophilum is an emerging pathogen with an unknown natural reservoir that exhibits unique requirements for iron supplementation to grow in vitro. Understanding the basis for this iron requirement is important because it is fundamental to isolation of the organism from clinical samples and environmental sources. Defining the molecular basis for M. haemophilium\u27s growth requirements will also shed new light on mycobacterial strategies to acquire iron and can be exploited to define how differences in such strategies influence pathogenesis. Here, through a combination of sequencing and experimental approaches, we explain the basis for the iron requirement. We further demonstrate the genetic closeness of M. haemophilum and Mycobacterium leprae, the causative agent of leprosy which cannot be cultured in vitro, and we demonstrate methods to genetically manipulate M. haemophilum. These findings pave the way for the use of M. haemophilum as a model to elucidate functions of genes shared with M. leprae

    Mycobacterium tuberculosis Dihydrofolate Reductase Is Not a Target Relevant to the Antitubercular Activity of Isoniazid

    Get PDF
    Mycobacterium tuberculosis enoyl-acyl-ACP reductase (InhA) has been demonstrated to be the primary target of isoniazid (INH). Recently, it was postulated that M. tuberculosis dihydrofolate reductase (DHFR) is also a target of INH, based on the findings that a 4R-INH-NADP adduct synthesized from INH by a nonenzymatic approach showed strong inhibition of DHFR in vitro, and overexpression of M. tuberculosis dfrA in M. smegmatis conferred a 2-fold increase of resistance to INH. In the present study, a plasmid expressing M. tuberculosis dfrA was transformed into M. smegmatis and M. tuberculosis strains, respectively. The transformant strains were tested for their resistance to INH. Compared to the wild-type strains, overexpression of dfrA in M. smegmatis and M. tuberculosis did not confer any resistance to INH based on the MIC values. Similar negative results were obtained with 14 other overexpressed proteins that have been proposed to bind some form of INH-NAD(P) adduct. An Escherichia coli cell-based system was designed that allowed coexpression of both M. tuberculosis katG and dfrA genes in the presence of INH. The DHFR protein isolated from the experimental sample was not found bound with any INH-NADP adduct by enzyme inhibition assay and mass spectroscopic analysis. We also used whole-genome sequencing to determine whether polymorphisms in dfrA could be detected in six INH-resistant clinical isolates known to lack mutations in inhA and katG, but no such mutations were found. The dfrA overexpression experiments, together with the biochemical and sequencing studies, conclusively demonstrate that DHFR is not a target relevant to the antitubercular activity of INH

    A Recombinant Attenuated Mycobacterium tuberculosis Vaccine Strain Is Safe in Immunosuppressed Simian Immunodeficiency Virus-Infected Infant Macaques

    Get PDF
    ABSTRACT Many resource-poor countries are faced with concurrent epidemics of AIDS and tuberculosis (TB) caused by human immunodeficiency virus (HIV) and Mycobacterium tuberculosis , respectively. Dual infections with HIV and M. tuberculosis are especially severe in infants. There is, however, no effective HIV vaccine, and the only licensed TB vaccine, the Mycobacterium bovis bacillus Calmette-GuΓ©rin (BCG) vaccine, can cause disseminated mycobacterial disease in HIV-infected children. Thus, a pediatric vaccine to prevent HIV and M. tuberculosis infections is urgently needed. We hypothesized that a highly attenuated M. tuberculosis strain containing HIV antigens could be safely administered at birth and induce mucosal and systemic immune responses to protect against HIV and TB infections, and we rationalized that vaccine safety could be most rigorously assessed in immunocompromised hosts. Of three vaccine candidates tested, the recombinant attenuated M. tuberculosis strain mc 2 6435 carrying a simian immunodeficiency virus (SIV) Gag expression plasmid and harboring attenuations of genes critical for replication ( panCD and leuCD ) and immune evasion ( secA2 ), was found to be safe for oral or intradermal administration to non-SIV-infected and SIV-infected infant macaques. Safety was defined as the absence of clinical symptoms, a lack of histopathological changes indicative of M. tuberculosis infection, and a lack of mycobacterial dissemination. These data represent an important step in the development of novel TB vaccines and suggest that a combination recombinant attenuated M. tuberculosis -HIV vaccine could be a safe alternative to BCG for the pediatric population as a whole and, more importantly, for the extreme at-risk group of HIV-infected infants

    Role of Cellular Heparan Sulfate Proteoglycans in Infection of Human Adenovirus Serotype 3 and 35

    Get PDF
    Species B human adenoviruses (Ads) are increasingly associated with outbreaks of acute respiratory disease in U.S. military personnel and civil population. The initial interaction of Ads with cellular attachment receptors on host cells is via Ad fiber knob protein. Our previous studies showed that one species B Ad receptor is the complement receptor CD46 that is used by serotypes 11, 16, 21, 35, and 50 but not by serotypes 3, 7, and 14. In this study, we attempted to identify yet-unknown species B cellular receptors. For this purpose we used recombinant Ad3 and Ad35 fiber knobs in high-throughput receptor screening methods including mass spectrometry analysis and glycan arrays. Surprisingly, we found that the main interacting surface molecules of Ad3 fiber knob are cellular heparan sulfate proteoglycans (HSPGs). We subsequently found that HSPGs acted as low-affinity co-receptors for Ad3 but did not represent the main receptor of this serotype. Our study also revealed a new CD46-independent infection pathway of Ad35. This Ad35 infection mechanism is mediated by cellular HSPGs. The interaction of Ad35 with HSPGs is not via fiber knob, whereas Ad3 interacts with HSPGs via fiber knob. Both Ad3 and Ad35 interacted specifically with the sulfated regions within HSPGs that have also been implicated in binding physiologic ligands. In conclusion, our findings show that Ad3 and Ad35 directly utilize HSPGs as co-receptors for infection. Our data suggest that adenoviruses evolved to simulate the presence of physiologic HSPG ligands in order to increase infection
    • …
    corecore