25,491 research outputs found

    Statically checking confidentiality via dynamic labels

    Get PDF
    This paper presents a new approach for verifying confidentiality for programs, based on abstract interpretation. The framework is formally developed and proved correct in the theorem prover PVS. We use dynamic labeling functions to abstractly interpret a simple programming language via modification of security levels of variables. Our approach is sound and compositional and results in an algorithm for statically checking confidentiality

    Rapid Measurement of Quantum Systems using Feedback Control

    Full text link
    We introduce a feedback control algorithm that increases the speed at which a measurement extracts information about a dd-dimensional system by a factor that scales as d2d^2. Generalizing this algorithm, we apply it to a register of nn qubits and show an improvement O(n). We derive analytical bounds on the benefit provided by the feedback and perform simulations that confirm that this speedup is achieved.Comment: 4 pages, 4 figures. V2: Minor correction

    Quantum measurement and the first law of thermodynamics: the energy cost of measurement is the work value of the acquired information

    Full text link
    The energy cost of measurement is an interesting fundamental question, and may have profound implications for quantum technologies. In the context of Maxwell's demon, it is often stated that measurement has no minimum energy cost, while information has a work value, even though these statements can appear contradictory. However, as we elucidate, these statements do no refer to the cost paid by the measuring device. Here we show that it is only when a measuring device has access to a zero temperature reservoir - that is, never - that the measurement requires no energy. All real measuring devices pay the cost that a heat engine pays to obtain the work value of the information they acquire.Comment: 4 pages, revtex4-1. v2: added a referenc

    Electron-hole spectra created by adsorption on metals from density-functional theory

    Full text link
    Non-adiabaticity in adsorption on metal surfaces gives rise to a number of measurable effects, such as chemicurrents and exo-electron emission. Here we present a quantitative theory of chemicurrents on the basis of ground-state density-functional theory (DFT) calculations of the effective electronic potential and the Kohn-Sham band structure. Excitation probabilities are calculated both for electron-hole pairs and for electrons and holes separately from first-order time-dependent perturbation theory. This is accomplished by evaluating the matrix elements (between Kohn-Sham states) of the rate of change of the effective electronic potential between subsequent (static) DFT calculations. Our approach is related to the theory of electronic friction, but allows for direct access to the excitation spectra. The method is applied to adsorption of atomic hydrogen isotopes on the Al(111) surface. The results are compatible with the available experimental data (for noble metal surfaces); in particular, the observed isotope effect in H versus D adsorption is described by the present theory. Moreover, the results are in qualitative agreement with computationally elaborate calculations of the full dynamics within time-dependent density-functional theory, with the notable exception of effects due to the spin dynamics. Being a perturbational approach, the method proposed here is simple enough to be applied to a wide class of adsorbates and surfaces, while at the same time allowing us to extract system-specific information.Comment: 23 pages, 9 figures, accepted for publication in Phys. Rev. B, http://prb.aps.org/, v2: some major improvements, plus correction of minor error

    Healthiness from Duality

    Get PDF
    Healthiness is a good old question in program logics that dates back to Dijkstra. It asks for an intrinsic characterization of those predicate transformers which arise as the (backward) interpretation of a certain class of programs. There are several results known for healthiness conditions: for deterministic programs, nondeterministic ones, probabilistic ones, etc. Building upon our previous works on so-called state-and-effect triangles, we contribute a unified categorical framework for investigating healthiness conditions. We find the framework to be centered around a dual adjunction induced by a dualizing object, together with our notion of relative Eilenberg-Moore algebra playing fundamental roles too. The latter notion seems interesting in its own right in the context of monads, Lawvere theories and enriched categories.Comment: 13 pages, Extended version with appendices of a paper accepted to LICS 201

    ATM-CMG control system stability

    Get PDF
    Stability analyses and simulation data and results are presented for an initial Control Moment Gyroscope system proposed for the Apollo Telescope Mount cluster (later named Skylab) using momentum vector feedback. A compensation filtering technique is presented which significantly improved analytical and simulation performance of the system. This technique is quite similar to the complementary filtering technique and represents an early NASA application

    Macro Dark Matter

    Full text link
    Dark matter is a vital component of the current best model of our universe, Λ\LambdaCDM. There are leading candidates for what the dark matter could be (e.g. weakly-interacting massive particles, or axions), but no compelling observational or experimental evidence exists to support these particular candidates, nor any beyond-the-Standard-Model physics that might produce such candidates. This suggests that other dark matter candidates, including ones that might arise in the Standard Model, should receive increased attention. Here we consider a general class of dark matter candidates with characteristic masses and interaction cross-sections characterized in units of grams and cm2^2, respectively -- we therefore dub these macroscopic objects as Macros. Such dark matter candidates could potentially be assembled out of Standard Model particles (quarks and leptons) in the early universe. A combination of Earth-based, astrophysical, and cosmological observations constrain a portion of the Macro parameter space. A large region of parameter space remains, most notably for nuclear-dense objects with masses in the range 55101755 - 10^{17} g and 2×10204×10242\times10^{20} - 4\times10^{24} g, although the lower mass window is closed for Macros that destabilize ordinary matter.Comment: 13 pages, 1 table, 4 figures. Submitted to MNRAS. v3: corrected small errors and a few points were made more clear, v4: included CMB bounds on dark matter-photon coupling from Wilkinson et al. (2014) and references added. Final revision matches published versio

    Quality of Variational Trial States

    Full text link
    Besides perturbation theory (which clearly requires the knowledge of the exact unperturbed solution), variational techniques represent the main tool for any investigation of the eigenvalue problem of some semibounded operator H in quantum theory. For a reasonable choice of the employed trial subspace of the domain of H, the lowest eigenvalues of H usually can be located with acceptable precision whereas the trial-subspace vectors corresponding to these eigenvalues approximate, in general, the exact eigenstates of H with much less accuracy. Accordingly, various measures for the accuracy of the approximate eigenstates derived by variational techniques are scrutinized. In particular, the matrix elements of the commutator of the operator H and (suitably chosen) different operators with respect to degenerate approximate eigenstates of H obtained by variational methods are proposed as new criteria for the accuracy of variational eigenstates. These considerations are applied to precisely that Hamiltonian for which the eigenvalue problem defines the well-known spinless Salpeter equation. This bound-state wave equation may be regarded as (the most straightforward) relativistic generalization of the usual nonrelativistic Schroedinger formalism, and is frequently used to describe, e.g., spin-averaged mass spectra of bound states of quarks.Comment: LaTeX, 7 pages, version to appear in Physical Review

    Statistical uncertainty in quantum optical photodetection measurements

    Get PDF
    We present a complete statistical analysis of quantum optical measurement schemes based on photodetection. Statistical distributions of quantum observables determined from a finite number of experimental runs are characterized with the help of the generating function, which we derive using the exact statistical description of raw experimental outcomes. We use the developed formalism to point out that the statistical uncertainty results in substantial limitations of the determined information on the quantum state: though a family of observables characterizing the quantum state can be safely evaluated from experimental data, its further use to obtain the expectation value of some operators generates exploding statistical errors. These issues are discussed using the example of phase-insensitive measurements of a single light mode. We study reconstruction of the photon number distribution from photon counting and random phase homodyne detection. We show that utilization of the reconstructed distribution to evaluate a simple well-behaved observable, namely the parity operator, encounters difficulties due to accumulation of statistical errors. As the parity operator yields the Wigner function at the phase space origin, this example also demonstrates that transformation between various experimentally determined representations of the quantum state is a quite delicate matter.Comment: 18 pages REVTeX, 7 figures included using epsf. Few minor corrections made, clarified conclusion

    Measurement of dimensional stability

    Get PDF
    A technique was developed for measuring, with a precision of one part 10 to the 9th power, changes in physical dimensions delta L/L. Measurements have commenced on five materials: Heraeus-Schott Homosil (vitreous silica), Corning 7940 (vitreous silica), Corning ULE 7971 (titanium silicate), Schott Zero-Dur, and Owens-Illinois Cer-Vit C-101. The study was extended to include Universal Cyclops Invar LR-35 and Simonds-Saw Superinvar
    corecore