25,310 research outputs found

    Measurement of electric fields in the ionosphere, volume 2 Final report, Aug. 1966 - Sep. 1967

    Get PDF
    Electric field meter, using electron beam deflection techniques, for ionospheric measurement

    Measurement of electric fields in the ionosphere. Volume 1 - Technical summary report Final report, Aug. 1966 - Sep. 1967

    Get PDF
    Design and performance of electron beam electric field meter for ionospheric measurements near spacecraf

    The Monterey event in the Mediterranean: A record from shelf sediments of Malta

    Get PDF
    Oligo-Miocene carbonate platform and shelf sediments outcropping on the Maltese Islands provide an excellent archive of the paleoceanography of the central Mediterranean. A sequence of shallow water limestones, than shelf limestones, and marls, followed again by shallow water limestones, reflects drowning of a carbonate platform, the establishment of a shelf environment and, in the late Miocene, renewed progradation and aggradation of shallow water carbonates. The sequence recording the deepening of the Maltese platform contains several phosphorite hardgrounds and phosphorite pebble beds. These phosphorites were dated with strontium isotopes. Major episodes of phosphogenesis occurred between 25 and 16 Ma, and they are coeval with those phosphorite events reported from Florida and North Carolina. A Miocene carbon isotope and oxygen isotope stratigraphy was established on planktic and benthic foraminifera and on bulk samples. A major carbon isotope excursion with an amplitude of up to +l‰ between 18 and 12.5 Ma can be correlated with the globally recognized Monterey carbon isotope excursion. This is the first record of this event both in shallow water sediments and in the Mediterranean. The carbon isotope excursion precedes an oxygen isotope excursion which also was recognized in deep-sea records. Major episodes of phosphogenesis and platform drowning preceded the carbon isotope excursion by up to millions of years

    New camera tube improves ultrasonic inspection system

    Get PDF
    Electron multiplier, incorporated into the camera tube of an ultrasonic imaging system, improves resolution, effectively shields low level circuits, and provides a high level signal input to the television camera. It is effective for inspection of metallic materials for bonds, voids, and homogeneity

    STS-1 mission contamination evaluation approach

    Get PDF
    The space transportation system 1 mission will be the first opportunity to assess the induced environment of the orbiter payload bay region. Two tools were developed to aid in this assessment. The shuttle payload contamination evaluation computer program was developed to provide an analytical tool for prediction of the induced molecular contamination environment of the space shuttle orbiter during its onorbit operations. An induced environment contamination monitor was constructed and tested to measure the space shuttle orbiter contamination environment inside the payload bay during ascent and descent and inside and outside the payload bay during the onorbit phase. Measurements are to be performed during the four orbital flight test series. Measurements planned for the first flight are described and predicted environmental data are discussed. The results indicate that the expected data are within the measurement range of the induced environment contamination monitor instruments evaluated, and therefore it is expected that useful contamination environmental data will be available after the first flight

    Shuttle on-orbit contamination and environmental effects

    Get PDF
    Ensuring the compatibility of the space shuttle system with payloads and payload measurements is discussed. An extensive set of quantitative requirements and goals was developed and implemented by the space shuttle program management. The performance of the Shuttle system as measured by these requirements and goals was assessed partly through the use of the induced environment contamination monitor on Shuttle flights 2, 3, and 4. Contamination levels are low and generally within the requirements and goals established. Additional data from near-term payloads and already planned contamination measurements will complete the environment definition and allow for the development of contamination avoidance procedures as necessary for any payload

    Description of Liquid Nitrogen Experimental Test Facility

    Get PDF
    The Liquid Nitrogen Test Facility is a unique test facility for ground-based liquid nitrogen experimentation. The test rig consists of an insulated tank of approximately 12.5 cubic ft in volume, which is supplied with liquid nitrogen from a 300 gal dewar via a vacuum jacketed piping system. The test tank is fitted with pressure and temperature measuring instrumentation, and with two view ports which allow visual observation of test conditions. To demonstrate the capabilities of the facility, the initial test program is briefly described. The objective of the test program is to measure the condensation rate by injecting liquid nitrogen as a subcooled spray into the ullage of a tank 50 percent full of liquid nitrogen at saturated conditions. The condensation rate of the nitrogen vapor on the subcooled spray can be analytically modeled, and results validated and corrected by experimentally measuring the vapor condensation on liquid sprays

    Pure phase-encoded MRI and classification of solids

    Get PDF
    Here, the authors combine a pure phase-encoded magnetic resonance imaging (MRI) method with a new tissue-classification technique to make geometric models of a human tooth. They demonstrate the feasibility of three-dimensional imaging of solids using a conventional 11.7-T NMR spectrometer. In solid-state imaging, confounding line-broadening effects are typically eliminated using coherent averaging methods. Instead, the authors circumvent them by detecting the proton signal at a fixed phase-encode time following the radio-frequency excitation. By a judicious choice of the phase-encode time in the MRI protocol, the authors differentiate enamel and dentine sufficiently to successfully apply a new classification algorithm. This tissue-classification algorithm identifies the distribution of different material types, such as enamel and dentine, in volumetric data. In this algorithm, the authors treat a voxel as a volume, not as a single point, and assume that each voxel may contain more than one material. They use the distribution of MR image intensities within each voxel-sized volume to estimate the relative proportion of each material using a probabilistic approach. This combined approach, involving MRI and data classification, is directly applicable to bone imaging and hard-tissue contrast-based modeling of biological solids

    Durability of zirconia thermal-barrier ceramic coatings on air-cooled turbine blades in cyclic jet engine operation

    Get PDF
    Thermal barrier ceramic coatings of stabilized zirconia over a bond coat of Ni Cr Al Y were tested for durability on air cooled turbine rotor blades in a research turbojet engine. Zirconia stabilized with either yttria, magnesia, or calcia was investigated. On the basis of durability and processing cost, the yttria stabilized zirconia was considered the best of the three coatings investigated
    corecore