24,485 research outputs found

    Measurement of electric fields in the ionosphere, volume 2 Final report, Aug. 1966 - Sep. 1967

    Get PDF
    Electric field meter, using electron beam deflection techniques, for ionospheric measurement

    Measurement of electric fields in the ionosphere. Volume 1 - Technical summary report Final report, Aug. 1966 - Sep. 1967

    Get PDF
    Design and performance of electron beam electric field meter for ionospheric measurements near spacecraf

    The Monterey event in the Mediterranean: A record from shelf sediments of Malta

    Get PDF
    Oligo-Miocene carbonate platform and shelf sediments outcropping on the Maltese Islands provide an excellent archive of the paleoceanography of the central Mediterranean. A sequence of shallow water limestones, than shelf limestones, and marls, followed again by shallow water limestones, reflects drowning of a carbonate platform, the establishment of a shelf environment and, in the late Miocene, renewed progradation and aggradation of shallow water carbonates. The sequence recording the deepening of the Maltese platform contains several phosphorite hardgrounds and phosphorite pebble beds. These phosphorites were dated with strontium isotopes. Major episodes of phosphogenesis occurred between 25 and 16 Ma, and they are coeval with those phosphorite events reported from Florida and North Carolina. A Miocene carbon isotope and oxygen isotope stratigraphy was established on planktic and benthic foraminifera and on bulk samples. A major carbon isotope excursion with an amplitude of up to +l‰ between 18 and 12.5 Ma can be correlated with the globally recognized Monterey carbon isotope excursion. This is the first record of this event both in shallow water sediments and in the Mediterranean. The carbon isotope excursion precedes an oxygen isotope excursion which also was recognized in deep-sea records. Major episodes of phosphogenesis and platform drowning preceded the carbon isotope excursion by up to millions of years

    Shock enhancement and control of hypersonic mixing and combustion

    Get PDF
    The possibility that shock enhanced mixing can substantially increase the rate of mixing between coflowing streams of hydrogen and air has been studied in experimental and computational investigations. Early numerical computations indicated that the steady interaction between a weak shock in air with a coflowing hydrogen jet can be well approximated by the two-dimensional time-dependent interaction between a weak shock and an initially circular region filled with hydrogen imbedded in air. An experimental investigation of the latter process has been carned out in the Caltech 17 Inch Shock Tube in experiments in which the laser induced fluorescence of byacetyl dye is used as a tracer for the motion of the helium gas after shock waves have passed across the helium cylinder. The flow field has also been studied using an Euler code computation of the flow field. Both investigations show that the shock impinging process causes the light gas cylinder to split into two parts. One of these mixes rapidly with air and the other forms a stably stratified vortex pair which mixes more slowly; about 60% of the light gas mixes rapidly with the ambient fluid. The geometry of the flow field and the mixing process and scaling parameters are discussed here. The success of this program encouraged the exploration of a low drag injection system in which the basic concept of shock generated streamwise vorticity could be incorporated in an injector for a Scramjet combustor at Mach numbers between 5 and 8. The results of a substantial computational program and a description of the wind tunnel model and preliminary experimental results obtained in the High Reynolds Number Mach 6 Tunnel at NASA Langley Research Center are given here

    Approximate theoretical performance evaluation for a diverging rocket

    Get PDF
    A simplified combustion model, which is motivated by available performance studies on the diverging rocket reactor, has been used as basis for an engine performance evaluation. Comparison with conventional rocket configurations shows that an upper performance limit for the diverging reactor is comparable with performance estimates for engines using an adiabatic work cycle. Development of the diverging reactor for engine applications may, however, offer some advantages for very hot, high-energy, propellant systems

    Healthiness from Duality

    Get PDF
    Healthiness is a good old question in program logics that dates back to Dijkstra. It asks for an intrinsic characterization of those predicate transformers which arise as the (backward) interpretation of a certain class of programs. There are several results known for healthiness conditions: for deterministic programs, nondeterministic ones, probabilistic ones, etc. Building upon our previous works on so-called state-and-effect triangles, we contribute a unified categorical framework for investigating healthiness conditions. We find the framework to be centered around a dual adjunction induced by a dualizing object, together with our notion of relative Eilenberg-Moore algebra playing fundamental roles too. The latter notion seems interesting in its own right in the context of monads, Lawvere theories and enriched categories.Comment: 13 pages, Extended version with appendices of a paper accepted to LICS 201

    Phonon number quantum jumps in an optomechanical system

    Full text link
    We describe an optomechanical system in which the mean phonon number of a single mechanical mode conditionally displaces the amplitude of the optical field. Using homodyne detection of the output field we establish the conditions under which phonon number quantum jumps can be inferred from the measurement record: both the cavity damping rate and the measurement rate of the phonon number must be much greater than the thermalization rate of the mechanical mode. We present simulations of the conditional dynamics of the measured system using the stochastic master equation. In the good-measurement limit, the conditional evolution of the mean phonon number shows quantum jumps as phonons enter and exit the mechanical resonator via the bath.Comment: 13 pages, 4 figures. minor revisions since first versio

    On the validity of the reduced Salpeter equation

    Get PDF
    We adapt a general method to solve both the full and reduced Salpeter equations and systematically explore the conditions under which these two equations give equivalent results in meson dynamics. The effects of constituent mass, angular momentum state, type of interaction, and the nature of confinement are all considered in an effort to clearly delineate the range of validity of the reduced Salpeter approximations. We find that for J̸=0J\not{\hspace*{-1.0mm}=}0 the solutions are strikingly similar for all constituent masses. For zero angular momentum states the full and reduced Salpeter equations give different results for small quark mass especially with a large additive constant coordinate space potential. We also show that 1m\frac{1}{m} corrections to heavy-light energy levels can be accurately computed with the reduced equation.Comment: Latex (uses epsf macro), 24 pages of text, 12 postscript figures included. Slightly revised version, to appear in Phys. Rev.
    • …
    corecore