7 research outputs found

    Surviving embryogenesis : The extraembryonic serosa protects the insect egg against desiccation and infection

    Get PDF
    Insects are the most diverse group of animals on earth. They inhabit nearly all terrestrial habitats. One of the factors underlying this success is the ability of insect eggs to survive in adverse conditions. For a long time the ability to survive these adverse conditions has been attributed to maternal investment in the form of a protective eggshell. In this thesis, I show that contrary to common belief, insect eggs are far from helpless. The insect egg itself develops a cellular layer around the egg called the serosa. This serosa protects the developing embryo from dehydration which enables it to survive in dry habitats. The serosa furthermore protects against infection, mounting an impressive immune response upon the entry of bacteria in the egg. The data presented in this thesis show the importance of the serosa in the survival of the insect egg. I propose that this multifunctional serosa contributed to the great success of insects.UBL - phd migration 201

    Genome-enabled insights into the biology of thrips as crop pests

    Get PDF
    Background The western flower thrips,Frankliniella occidentalis(Pergande), is a globally invasive pest and plant virus vector on a wide array of food, fiber, and ornamental crops. The underlying genetic mechanisms of the processes governing thrips pest and vector biology, feeding behaviors, ecology, and insecticide resistance are largely unknown. To address this gap, we present theF. occidentalisdraft genome assembly and official gene set.Results We report on the first genome sequence for any member of the insect order Thysanoptera. Benchmarking Universal Single-Copy Ortholog (BUSCO) assessments of the genome assembly (size = 415.8 Mb, scaffold N50 = 948.9 kb) revealed a relatively complete and well-annotated assembly in comparison to other insect genomes. The genome is unusually GC-rich (50%) compared to other insect genomes to date. The official gene set (OGS v1.0) contains 16,859 genes, of which similar to 10% were manually verified and corrected by our consortium. We focused on manual annotation, phylogenetic, and expression evidence analyses for gene sets centered on primary themes in the life histories and activities of plant-colonizing insects. Highlights include the following: (1) divergent clades and large expansions in genes associated with environmental sensing (chemosensory receptors) and detoxification (CYP4, CYP6, and CCE enzymes) of substances encountered in agricultural environments; (2) a comprehensive set of salivary gland genes supported by enriched expression; (3) apparent absence of members of the IMD innate immune defense pathway; and (4) developmental- and sex-specific expression analyses of genes associated with progression from larvae to adulthood through neometaboly, a distinct form of maturation differing from either incomplete or complete metamorphosis in the Insecta.Conclusions Analysis of theF. occidentalisgenome offers insights into the polyphagous behavior of this insect pest that finds, colonizes, and survives on a widely diverse array of plants. The genomic resources presented here enable a more complete analysis of insect evolution and biology, providing a missing taxon for contemporary insect genomics-based analyses. Our study also offers a genomic benchmark for molecular and evolutionary investigations of other Thysanoptera species.Animal science

    Immune function of the serosa in hemimetabolous insect eggs

    No full text
    Insects comprise more than a million species and many authors have attempted to explain this success by evolutionary innovations. A much overlooked evolutionary novelty of insects is the serosa, an extraembryonic epithelium around the yolk and embryo. We have shown previously that this epithelium provides innate immune protection to eggs of the beetle Tribolium castaneum. It remained elusive, however, whether this immune competence evolved in the Tribolium lineage or is ancestral to all insects. Here, we expand our studies to two hemimetabolous insects, the bug Oncopeltus fasciatus and the swarming grasshopper Locusta migratoria. For Oncopeltus, RNA sequencing reveals an extensive response upon infection, including the massive upregulation of antimicrobial peptides (AMPs). We demonstrate antimicrobial activity of these peptides using in vitro bacterial growth assays and describe two novel AMP families called Serosins and Ovicins. For both insects, quantitative polymerase chain reaction shows immune competence of the eggs when the serosa is present, and in situ hybridizations demonstrate that immune gene expression is localized in the serosa. This first evidence from hemimetabolous insect eggs suggests that immune competence is an ancestral property of the serosa. The evolutionary origin of the serosa with its immune function might have facilitated the spectacular radiation of the insects. This article is part of the theme issue 'Extraembryonic tissues: exploring concepts, definitions and functions across the animal kingdom'.Animal science

    Data underlying the paper: Egg survival is reduced by grave-soil microbes in the carrion beetle, Nicrophorus vespilloides

    No full text
    This data set is referred to the publication :"Jacobs, C. G. C.*, Wang, Y.*, Vogel, H., Vilcinskas, A., van der Zee, M., & Rozen, D. E. (2014). Egg survival is reduced by grave-soil microbes in the carrion beetle, Nicrophorus vespilloides. BMC Evolutionary Biology, 14(1), 208–215. https://doi.org/10.1186/s12862-014-0208-x. (Co-first author)
    corecore