31 research outputs found

    Ultrafast formation of single phase B2 AlCoCrFeNi high entropy alloy films by reactive Ni/Al multilayers as heat source

    Get PDF
    High entropy alloy films of AlCoCrFeNi B2-ordered structure are formed during an ultrafast heating process by reactive Ni/Al multilayers. The self-propagating high-temperature reaction occurring in reactive Ni/Al multilayers after ignition represents an ultrafast heat source which is used for the transformation of a thin films Al/CoFe/CrNi multilayer structure into a single-phase high entropy alloy film. The materials design of the combined multilayers thus determines the phase formation. Conventional rapid thermal annealing transforms the multilayer into a film with multiple equilibrium phases. Ultrafast combustion synthesis produces films with ultrafine-grained single-phase B2-ordered compound alloy. The heating rates during the combustion synthesis are in the order of one million K/s, much higher than those of the rapid thermal annealing, which is about 7 K/s. The results are compared with differential scanning calorimetry experiments with heating rates ranging from about 100 K/s up to 25000 K/s. It is shown that the heating rate clearly determines the phase formation in the multilayers. The rapid kinetics of the combustion prevents long-range diffusion and promotes the run-away transformation. Thus, multilayer combustion synthesis using reactive Ni/Al multilayers as heat source represents a new pathway for the fabrication of single phase high-entropy alloy films

    Plant chromosome/marker gene fusion assay for study of normal and truncated T-DNA integration events

    No full text
    During Agrobacterium tumefaciens infection, the T-DNA flanked by 24 by imperfect direct repeats is transferred and stably integrated into the plant chromosome at random positions. Here we measured the frequency with which a promoterless reporter gene is activated after insertion into the Nicotiana tabacum SR1 genome. When adjacent to the right or left T-DNA border sequences, at least 35% of the transformants express the marker gene, suggesting preferential T-DNA insertion (>70%) in transcriptionally active regions of the plant genome. When the promoterless neomycin phosphotransferase II (nptII) gene is located internally in the T-DNA, the activation frequency drops to 1% since gene activation requires T-DNA truncation. These truncation events in the nptII upstream region occur independently of the nature of the upstream sequence and of the T-DNA length. Deletion of the right border region prevents the detection of activated marker genes. Therefore, T-DNA truncation probably occurs after synthesis of a normal T-DNA intermediate during the transfer and/or integration process. In the absence of border regions, expression of the nptII selectable marker directed by the nopaline synthase promoter was detected in 1 out of 105 regenerated calli, suggesting the possibility that any DNA sequence from the Ti plasmid can be transformed into the plant genome, albeit at a low frequency

    Agrobacterium tumefaciens transformation and cotransformation frequencies of Arabidopsis thaliana root explants and tobacco protoplasts

    No full text
    In view of the recent finding that different T-DNAs tend to ligate and integrate as repeats at single chromosomal positions, the frequency of transformation and cotransformation was determined during cocultivation of Arabidopsis thaliana root explants and Nicotiana tabacum protoplasts with two Agrobacterium strains. The transformation frequency of unselected A, thaliana shoots was lower than 1% whereas that of cocultivated tobacco protoplasts was approximately 18%, The cotransformation frequencies, defined as the frequencies with which cells transformed with a first T-DNA contained a second unselected T-DNA, were approximately 40% reproducible, irrespective of the selection, the transformation frequency, and the plant system used. Extrapolation of these results suggests that at least two independently transferred T-DNAs were present in 64% of the transformed plant cells, Molecular analysis of cocultivated N. tabacum shoots regenerated on nonselective medium showed that only a few transformants had a silenced (2/46) or truncated (1/46) T-DNA, Therefore, most integrated T-DNAs expressed their selectable or screenable markers in primary transgenic plants. Remarkably, 10 to 30% of the selected A. thaliana shoots or progenies lost the T-DNA marker they were selected on. As these regenerants contained the unselected T-DNA with a high frequency (17%), these selected plants might result from the expression of unstable, transiently expressed T-DNAs, In conclusion, a significant part of the T-DNAs is lost from the transformed cells

    The DNA sequences of T-DNA junctions suggest that complex T-DNA loci are formed by a recombination process resembling T-DNA integration

    No full text
    After Agrobacterium-mediated plant transformation, multiple T-DNAs frequently integrate at the same position in the plant genome, resulting in the formation of inverted and direct repeats. Because these inverted repeats cannot be amplified and analyzed by PCR, Arabidopsis root cells were co-transformed with two different T-DNAs with distinct sequences adjacent to the T-DNA borders. Nine direct or inverted T-DNA border junctions were analyzed at the sequence level. Precise end-to-end fusions were found between two right border ends, whereas imprecise fusions and filler DNA were present in T-DNA linkages containing a left border end. The results suggest that end-to-end ligation of double-stranded T-DNAs occurs especially between right T-DNA ends and that illegitimate recombination on the basis of microhomology, deletions, repair activities and insertions of filler DNA is involved in the formation of left border T-DNA junctions. Therefore, a similar illegitimate recombination mechanism is proposed that is involved in the formation of complex T-DNA inserts as well as in the integration of the T-DNA in the plant genome

    The T-DNA integration pattern in Arabidopsis transformants is highly determined by the transformed target cell

    No full text
    Transgenic loci obtained after Agrobacterium tumefaciens-mediated transformation can be simple, but fairly often they contain multiple T-DNA copies integrated into the plant genome. To understand the origin of complex T-DNA loci, floral-dip and root transformation experiments were carried out in Arabidopsis thaliana with mixtures of A. tumefaciens strains, each harboring one or two different T-DNA vectors. Upon floral-dip transformation, 6-30% of the transformants were co-transformed by multiple T-DNAs originating from different bacteria and 20-36% by different T-DNAs from one strain. However, these co-transformation frequencies were too low to explain the presence of on average 4-6 T-DNA copies in these transformants, suggesting that, upon floral-dip transformation, T-DNA replication frequently occurs before or during integration after the transfer of single T-DNA copies. Upon root transformation, the co-transformation frequencies of T-DNAs originating from different bacteria were similar or slightly higher (between 10 and 60%) than those obtained after floral-dip transformation, whereas the co-transformation frequencies of different T-DNAs from one strain were comparable (24-31%). Root transformants generally harbor only one to three T-DNA copies, and thus co-transformation of different T-DNAs can explain the T-DNA copy number in many transformants, but T-DNA replication is postulated to occur in most multicopy root transformants. In conclusion, the comparable co-transformation frequencies and differences in complexity of the T-DNA loci after floral-dip and root transformations indicate that the T-DNA copy number is highly determined by the transformation-competent target cells

    Frequencies of simultaneous transformation with different T-DNAs and their relevance to the Agrobacterium/plant cell interaction

    No full text
    We investigated whether the efficiency of transformation of plant cells by Agrobaeterium tumefaciens during cocultivation is limited by the properties of the plant cells or by the infecting bacteria. Therefore, tobacco protoplasts were infected by cocultivation with two different agrobacteria strains carrying Ti plasmids with distinguishable T-DNAs. These T-DNAs cotransform plant cells at a frequency equal to the product of their independent transformation frequencies, which indicates that all plant cells are equally competent. On the other hand, when these T-DNAs are located on the same Ti plasmid vector within one bacterial strain, the cotransformation frequency is significantly higher than the product of the single transformation frequencies. We interpret these results to indicate that transformation is limited more by the establishment of effective bacteria/plant cell interaction than by (i) the process of DNA integration and (ii) by the number of plant cells capable of being transformed by Agrobacterium. We found that most plant cells are transformed by only one or a few agrobacteria. Analysis of the number of T-DNA copies in these clonally transformed lines indicates amplification of the original, infecting T-region copy
    corecore