2,631 research outputs found

    From Lagrangian to Quantum Mechanics with Symmetries

    Full text link
    We present an old and regretfully forgotten method by Jacobi which allows one to find many Lagrangians of simple classical models and also of nonconservative systems. We underline that the knowledge of Lie symmetries generates Jacobi last multipliers and each of the latter yields a Lagrangian. Then it is shown that Noether's theorem can identify among those Lagrangians the physical Lagrangian(s) that will successfully lead to quantization. The preservation of the Noether symmetries as Lie symmetries of the corresponding Schr\"odinger equation is the key that takes classical mechanics into quantum mechanics. Some examples are presented.Comment: To appear in: Proceedings of Symmetries in Science XV, Journal of Physics: Conference Series, (2012

    Information Geometry, Inference Methods and Chaotic Energy Levels Statistics

    Full text link
    In this Letter, we propose a novel information-geometric characterization of chaotic (integrable) energy level statistics of a quantum antiferromagnetic Ising spin chain in a tilted (transverse) external magnetic field. Finally, we conjecture our results might find some potential physical applications in quantum energy level statistics.Comment: 9 pages, added correct journal referenc

    On a generalization of Jacobi's elliptic functions and the Double Sine-Gordon kink chain

    Get PDF
    A generalization of Jacobi's elliptic functions is introduced as inversions of hyperelliptic integrals. We discuss the special properties of these functions, present addition theorems and give a list of indefinite integrals. As a physical application we show that periodic kink solutions (kink chains) of the double sine-Gordon model can be described in a canonical form in terms of generalized Jacobi functions.Comment: 18 pages, 9 figures, 3 table

    Modular Solutions to Equations of Generalized Halphen Type

    Full text link
    Solutions to a class of differential systems that generalize the Halphen system are determined in terms of automorphic functions whose groups are commensurable with the modular group. These functions all uniformize Riemann surfaces of genus zero and have qq--series with integral coefficients. Rational maps relating these functions are derived, implying subgroup relations between their automorphism groups, as well as symmetrization maps relating the associated differential systems.Comment: PlainTeX 36gs. (Formula for Hecke operator corrected.

    General relativistic gravitational field of a rigidly rotating disk of dust: Solution in terms of ultraelliptic functions

    Full text link
    In a recent paper we presented analytic expressions for the axis potential, the disk metric, and the surface mass density of the global solution to Einstein's field equations describing a rigidly rotating disk of dust. Here we add the complete solution in terms of ultraelliptic functions and quadratures.Comment: 5 pages, published in 1995 [Phys. Rev. Lett. 75 (1995) 3046

    Elliptic Phases: A Study of the Nonlinear Elasticity of Twist-Grain Boundaries

    Full text link
    We develop an explicit and tractable representation of a twist-grain-boundary phase of a smectic A liquid crystal. This allows us to calculate the interaction energy between grain boundaries and the relative contributions from the bending and compression deformations. We discuss the special stability of the 90 degree grain boundaries and discuss the relation of this structure to the Schwarz D surface.Comment: 4 pages, 2 figure

    Little groups of irreps of O(3), SO(3), and the infinite axial subgroups

    Full text link
    Little groups are enumerated for the irreps and their components in any basis of O(3) and SO(3) up to rank 9, and for all irreps of C_{\infty}, Ch_{\infty h}, Cv_{\infty v}, D_{\infty} and Dh_{\infty h}. The results are obtained by a new chain criterion, which distinguishes massive (rotationally inequivalent) irrep basis functions and allows for multiple branching paths, and are verified by inspection. These results are relevant to the determination of the symmetry of a material from its linear and nonlinear optical properties and to the choices of order parameters for symmetry breaking in liquid crystals.Comment: 28 pages and 3 figure

    Efficient algorithms for rigid body integration using optimized splitting methods and exact free rotational motion

    Full text link
    Hamiltonian splitting methods are an established technique to derive stable and accurate integration schemes in molecular dynamics, in which additional accuracy can be gained using force gradients. For rigid bodies, a tradition exists in the literature to further split up the kinetic part of the Hamiltonian, which lowers the accuracy. The goal of this note is to comment on the best combination of optimized splitting and gradient methods that avoids splitting the kinetic energy. These schemes are generally applicable, but the optimal scheme depends on the desired level of accuracy. For simulations of liquid water it is found that the velocity Verlet scheme is only optimal for crude simulations with accuracies larger than 1.5%, while surprisingly a modified Verlet scheme (HOA) is optimal up to accuracies of 0.4% and a fourth order gradient scheme (GIER4) is optimal for even higher accuracies.Comment: 2 pages, 1 figure. Added clarifying comments. Accepted for publication in the Journal of Chemical Physic

    From geodesics of the multipole solutions to the perturbed Kepler problem

    Full text link
    A static and axisymmetric solution of the Einstein vacuum equations with a finite number of Relativistic Multipole Moments (RMM) is written in MSA coordinates up to certain order of approximation, and the structure of its metric components is explicitly shown. From the equation of equatorial geodesics we obtain the Binet equation for the orbits and it allows us to determine the gravitational potential that leads to the equivalent classical orbital equations of the perturbed Kepler problem. The relativistic corrections to Keplerian motion are provided by the different contributions of the RMM of the source starting from the Monopole (Schwarzschild correction). In particular, the perihelion precession of the orbit is calculated in terms of the quadrupole and 24^4-pole moments. Since the MSA coordinates generalize the Schwarzschild coordinates, the result obtained allows measurement of the relevance of the quadrupole moment in the first order correction to the perihelion frequency-shift

    Thermodynamic instability and first-order phase transition in an ideal Bose gas

    Full text link
    We conduct a rigorous investigation into the thermodynamic instability of ideal Bose gas confined in a cubic box, without assuming thermodynamic limit nor continuous approximation. Based on the exact expression of canonical partition function, we perform numerical computations up to the number of particles one million. We report that if the number of particles is equal to or greater than a certain critical value, which turns out to be 7616, the ideal Bose gas subject to Dirichlet boundary condition reveals a thermodynamic instability. Accordingly we demonstrate - for the first time - that, a system consisting of finite number of particles can exhibit a discontinuous phase transition featuring a genuine mathematical singularity, provided we keep not volume but pressure constant. The specific number, 7616 can be regarded as a characteristic number of 'cube' that is the geometric shape of the box.Comment: 1+21 pages; 3 figures (2 color and 1 B/W); Final version to appear in Physical Review A. Title changed from the previous one, "7616: Critical number of ideal Bose gas confined in a cubic box
    corecore