257 research outputs found

    Low temperature dielectric relaxation in ordinary perovskite ferroelectrics: enlightenment from high-energy x-ray diffraction

    Get PDF
    Ordinary ferroelectrics exhibit a second order phase transition that is characterized by a sharp peak in the dielectric permittivity at a frequency-independent temperature. Furthermore, these materials show a low temperature dielectric relaxation that appears to be a common behavior of perovskite systems. Tetragonal lead zirconate titanate is used here as a model system in order to explore the origin of such an anomaly, since there is no consensus about the physical phenomenon involved in it. Crystallographic and domain structure studies are performed from temperature dependent synchrotron x-ray diffraction measurement. Results indicate that the dielectric relaxation cannot be associated with crystallographic or domain configuration changes. The relaxation process is then parameterized by using the Vogel–Fulcher–Tammann phenomenological equation. Results allow us to hypothesize that the observed phenomenon is due to changes in the dynamic behavior of the ferroelectric domains related to the fluctuation of the local polarization.Postprint (author's final draft

    Running Decompactification, Sliding Towers, and the Distance Conjecture

    Full text link
    We study towers of light particles that appear in infinite-distance limits of moduli spaces of 9-dimensional N=1\mathcal{N}=1 string theories, some of which notably feature decompactification limits with running string coupling. The lightest tower in such decompactification limits consists of the non-BPS Kaluza-Klein modes of Type I' string theory, whose masses depend nontrivially on the moduli of the theory. We work out the moduli-dependence by explicit computation, finding that despite the running decompactification the Distance Conjecture remains satisfied with an exponential decay rate α1d2\alpha \ge \frac{1}{\sqrt{d-2}} in accordance with the sharpened Distance Conjecture. The related sharpened Convex Hull Scalar Weak Gravity Conjecture also passes stringent tests. Our results non-trivially test the Emergent String Conjecture, while highlighting the important subtlety that decompactification can lead to a running solution rather than to a higher-dimensional vacuum.Comment: 64 pages, 15 figure

    Non-Invertible Global Symmetries and Completeness of the Spectrum

    Get PDF
    It is widely believed that consistent theories of quantum gravity satisfy two basic kinematic constraints: they are free from any global symmetry, and they contain a complete spectrum of gauge charges. For compact, abelian gauge groups, completeness follows from the absence of a 1-form global symmetry. However, this correspondence breaks down for more general gauge groups, where the breaking of the 1-form symmetry is insufficient to guarantee a complete spectrum. We show that the correspondence may be restored by broadening our notion of symmetry to include non-invertible topological operators, and prove that their absence is sufficient to guarantee a complete spectrum for any compact, possibly disconnected gauge group. In addition, we prove an analogous statement regarding the completeness of twist vortices: codimension-2 objects defined by a discrete holonomy around their worldvolume, such as cosmic strings in four dimensions. We discuss how this correspondence is modified in various, more general contexts, including non-compact gauge groups, Higgsing of gauge theories, and the addition of Chern-Simons terms. Finally, we discuss the implications of our results for the Swampland program, as well as the phenomenological implications of the existence of twist strings.Comment: 55 pages + references; 3 figures; v2: minor revisions and references adde

    Chern-Weil Global Symmetries and How Quantum Gravity Avoids Them

    Full text link
    We draw attention to a class of generalized global symmetries, which we call "Chern-Weil global symmetries," that arise ubiquitously in gauge theories. The Noether currents of these Chern-Weil global symmetries are given by wedge products of gauge field strengths, such as F2H3F_2 \wedge H_3 and tr(F22)\text{tr}(F_2^2), and their conservation follows from Bianchi identities. As a result, they are not easy to break. However, it is widely believed that exact global symmetries are not allowed in a consistent theory of quantum gravity. As a result, any Chern-Weil global symmetry in a low-energy effective field theory must be either broken or gauged when the theory is coupled to gravity. In this paper, we explore the processes by which Chern-Weil symmetries may be broken or gauged in effective field theory and string theory. We will see that many familiar phenomena in string theory, such as axions, Chern-Simons terms, worldvolume degrees of freedom, and branes ending on or dissolving in other branes, can be interpreted as consequences of the absence of Chern-Weil symmetries in quantum gravity, suggesting that they might be general features of quantum gravity. We further discuss implications of breaking and gauging Chern-Weil symmetries for particle phenomenology and for boundary CFTs of AdS bulk theories. Chern-Weil global symmetries thus offer a unified framework for understanding many familiar aspects of quantum field theory and quantum gravity.Comment: 62 pages + appendices, 5 figures. v2: References adde

    Something Old, Something New, Something Borrowed; How the Thermoacidophilic Archaeon Sulfolobus solfataricus Responds to Oxidative Stress

    Get PDF
    To avoid molecular damage of biomolecules due to oxidation, all cells have evolved constitutive and responsive systems to mitigate and repair chemical modifications. Archaea have adapted to some of the most extreme environments known to support life, including highly oxidizing conditions. However, in comparison to bacteria and eukaryotes, relatively little is known about the biology and biochemistry of archaea in response to changing conditions and repair of oxidative damage. In this study transcriptome, proteome, and chemical reactivity analyses of hydrogen peroxide (H2O2) induced oxidative stress in Sulfolobus solfataricus (P2) were conducted. Microarray analysis of mRNA expression showed that 102 transcripts were regulated by at least 1.5 fold, 30 minutes after exposure to 30 µM H2O2. Parallel proteomic analyses using two-dimensional differential gel electrophoresis (2D-DIGE), monitored more than 800 proteins 30 and 105 minutes after exposure and found that 18 had significant changes in abundance. A recently characterized ferritin-like antioxidant protein, DPSL, was the most highly regulated species of mRNA and protein, in addition to being post-translationally modified. As expected, a number of antioxidant related mRNAs and proteins were differentially regulated. Three of these, DPSL, superoxide dismutase, and peroxiredoxin were shown to interact and likely form a novel supramolecular complex for mitigating oxidative damage. A scheme for the ability of this complex to perform multi-step reactions is presented. Despite the central role played by DPSL, cells maintained a lower level of protection after disruption of the dpsl gene, indicating a level of redundancy in the oxidative stress pathways of S. solfataricus. This work provides the first “omics” scale assessment of the oxidative stress response for an archeal organism and together with a network analysis using data from previous studies on bacteria and eukaryotes reveals evolutionarily conserved pathways where complex and overlapping defense mechanisms protect against oxygen toxicity

    First experience in human beings with a permanently implantable intrasac pressure transducer for monitoring endovascular repair of abdominal aortic aneurysms

    Get PDF
    ObjectivesEndovascular stent graft repair of abdominal aortic aneurysms (AAAs) prevents rupture by excluding the aneurysm sac from systemic arterial pressure. Current surveillance protocols after endovascular aneurysm repair (EVAR) follow secondary markers of sac pressurization, namely, endoleak and sac enlargement. We report the first clinical experience with the use of a permanently implantable, ultrasound-activated remote pressure transducer to measure intrasac pressure after EVAR.MethodsOver 7 months, 14 patients underwent EVAR of an infrarenal abdominal aortic aneurysm with implantation of an ultrasound-activated remote pressure transducer fixed to the outside of the stent graft and exposed to the excluded aortic sac. Twelve patients received modular bifurcated stent grafts, and 2 patients received aortouniiliac devices. Intrasac pressures were measured directly with an intravascular catheter and by the remote sensor at stent-graft deployment. Follow-up sac pressures were measured with a remote sensor and correlated with systemic arterial pressure at every follow-up visit. Mean follow-up was 2.6 ±1.9 months.ResultsExcellent concordance was found between catheter-derived and transducer-derived intrasac pressssure intraoperatively. Pulsatile waveforms were seen in all functioning transducers at each evaluation interval. One implant ceased to function at 2 months of follow-up. In 1 patient a type I endoleak was diagnosed on 1-month computed tomography (CT) scans; 3 type II endoleaks were observed. Those patients with complete exclusion of the aneurysm on CT scans had a significant difference in systemic and sac systolic pressures initially (P < .001) and at 1 month (P < .001). Initial sac diastolic pressures were higher than systemic diastolic pressures (P < .001). The ratio of systemic to sac systolic pressure increased over time in those patients with complete aneurysm exclusion (P < .001). Four of 6 patients with no endoleak and greater than 1-month follow-up had diminution of sac systolic pressure to 40 mm Hg or less by 3 months.ConclusionThis is the first report of a totally implantable chronic pressure transducer to monitor the results of EVAR in human beings. Aneurysm exclusion leads to gradual diminution of sac pressure over several months. Additional clinical follow-up will be necessary to determine whether aneurysm sac pressure monitoring can replace CT in the long-term surveillance of patients after EVAR

    Virtually Being Lenin Enhances Presence and Engagement in a Scene From the Russian Revolution

    Get PDF
    Virtual Reality (VR) has been widely applied to cultural heritage such as the reconstruction of ancient sites and artifacts. It has hardly been applied to the reprise of specific important moments in history. On the other hand immersive journalism does attempt to recreate current events in VR, but such applications typically give the viewer a disembodied non-participatory role in the scene of interest. Here we show how VR was used to reconstruct a specific historical event, where a famous photograph was brought to life, showing Lenin, the leader of the 1917 October Russian Revolution, giving a speech to Red Army recruits in Moscow 1920. We carried out a between groups experimental study with three conditions: Embodied—where the participant was first embodied as Lenin and then later in the audience watching Lenin; Included—where the participant was not embodied as Lenin but was embodied as part of the audience; and Observing—where the participant mainly viewed the scene from a disembodied third person point of view. Twenty participants were assigned to each of the three conditions in a between-groups design. We found that the level of presence was greatest in the Embodied and Included conditions, and that participants were least likely to later follow up information about the Russian Revolution in the Observing condition. Our conclusion is that if the VR setup allows for a period of embodiment as a character in the scenario then this should be employed in order to maximize the chance of participant presence and engagement with the story

    Contrasting Heat Stress Response Patterns of Coral Holobionts Across the Red Sea Suggest Distinct Mechanisms of Thermal Tolerance

    Get PDF
    Corals from the northern Red Sea, in particular the Gulf of Aqaba (GoA), have exceptionally high bleaching thresholds approaching \u3e5℃ above their maximum monthly mean (MMM) temperatures. These elevated thresholds are thought to be due to historical selection, as corals passed through the warmer Southern Red Sea during recolonization from the Arabian Sea. To test this hypothesis, we determined thermal tolerance thresholds of GoA versus central Red Sea (CRS) Stylophora pistillata corals using multi-temperature acute thermal stress assays to determine thermal thresholds. Relative thermal thresholds of GoA and CRS corals were indeed similar and exceptionally high (~7℃ above MMM). However, absolute thermal thresholds of CRS corals were on average 3℃ above those of GoA corals. To explore the molecular underpinnings, we determined gene expression and microbiome response of the coral holobiont. Transcriptomic responses differed markedly, with a strong response to the thermal stress in GoA corals and their symbiotic algae versus a remarkably muted response in CRS colonies. Concomitant to this, coral and algal genes showed temperature-induced expression in GoA corals, while exhibiting fixed high expression (front-loading) in CRS corals. Bacterial community composition of GoA corals changed dramatically under heat stress, whereas CRS corals displayed stable assemblages. We interpret the response of GoA corals as that of a resilient population approaching a tipping point in contrast to a pattern of consistently elevated thermal resistance in CRS corals that cannot further attune. Such response differences suggest distinct thermal tolerance mechanisms that may affect the response of coral populations to ocean warming
    corecore