4 research outputs found

    Characterization of a broad-based mosquito yeast interfering RNA larvicide with a conserved target site in mosquito semaphorin-1a genes

    Get PDF
    BACKGROUND: RNA interference (RNAi), which has facilitated functional characterization of mosquito neural development genes such as the axon guidance regulator semaphorin-1a (sema1a), could one day be applied as a new means of vector control. Saccharomyces cerevisiae (baker's yeast) may represent an effective interfering RNA expression system that could be used directly for delivery of RNA pesticides to mosquito larvae. Here we describe characterization of a yeast larvicide developed through bioengineering of S. cerevisiae to express a short hairpin RNA (shRNA) targeting a conserved site in mosquito sema1a genes. RESULTS: Experiments conducted on Aedes aegypti larvae demonstrated that the yeast larvicide effectively silences sema1a expression, generates severe neural defects, and induces high levels of larval mortality in laboratory, simulated-field, and semi-field experiments. The larvicide was also found to induce high levels of Aedes albopictus, Anopheles gambiae and Culex quinquefasciatus mortality. CONCLUSIONS: The results of these studies indicate that use of yeast interfering RNA larvicides targeting mosquito sema1a genes may represent a new biorational tool for mosquito control

    Evaluation of large volume yeast interfering RNA lure-and-kill ovitraps for attraction and control of Aedes mosquitoes

    Get PDF
    Aedes mosquitoes (Diptera: Culicidae), principle vectors of several arboviruses, typically lay eggs in man-made water-filled containers located near human dwellings. Given the widespread emergence of insecticide resistance, stable and biofriendly alternatives for mosquito larviciding are needed. Laboratory studies have demonstrated that inactivated yeast interfering RNA tablets targeting key larval developmental genes can be used to facilitate effective larvicidal activity while also promoting selective gravid female oviposition behaviour. Here we examined the efficacy of transferring this technology toward development of lure-and-kill ovitraps targeting Aedes aegypti (L.) and Aedes albopictus (Skuse) female mosquitoes. Insectary, simulated field and semi-field experiments demonstrated that two mosquito-specific yeast interfering RNA pesticides induce high levels of mortality among larvae of both species in treated large volume containers. Small-scale field trials conducted in Trinidad, West Indies demonstrated that large volume ovitrap containers baited with inactivated yeast tablets lure significantly more gravid females than traps containing only water and were highly attractive to both A. aegypti and A. albopictus females. These studies indicate that development of biorational yeast interfering RNA-baited ovitraps may represent a new tool for control of Aedes mosquitoes, including deployment in existing lure-and-kill ovitrap technologies or traditional container larviciding programs

    Oral RNAi for Gene Silencing in Mosquitoes: From the Bench to the Field

    No full text
    RNA interference (RNAi) has played a key role in the field of insect functional genomics, a discipline that has enhanced the study of developmental, evolutionary, physiological, and molecular biological phenomena in a wide variety of insects, including disease vector mosquitoes. Here we introduce a recently optimized RNAi procedure in which adult mosquitoes are fed with a colored sugar bait containing small interfering RNA (siRNA). This procedure effectively and economically leads to gene silencing, is technically straightforward, and has been successfully used to characterize a number of genes in adult mosquitoes. We also discuss how, in addition to laboratory applications, this oral RNAi procedure might one day be used in the field for controlling insect pests

    Characterization of a yeast interfering RNA larvicide with a target site conserved in the synaptotagmin gene of multiple disease vector mosquitoes.

    No full text
    New mosquito control strategies are vitally needed to address established and emerging arthropod-borne infectious diseases. Here we describe the characterization of a yeast interfering RNA larvicide that was developed through the genetic engineering of Saccharomyces cerevisiae (baker's yeast) to express a short hairpin RNA targeting the Aedes aegypti synaptotagmin (Aae syt) gene. The larvicide effectively silences the Aae syt gene, causes defects at the larval neural synapse, and induces high rates of A. aegypti larval mortality in laboratory, simulated-field, and semi-field trials. Conservation of the interfering RNA target site in multiple mosquito species, but not in humans or other non-target species, suggested that it may function as a broad-range mosquito larvicide. In support of this, consumption of the yeast interfering RNA larvicide was also found to induce high rates of larval mortality in Aedes albopictus, Anopheles gambiae, and Culex quinquefasciatus mosquito larvae. The results of these studies suggest that this biorational yeast interfering RNA larvicide may represent a new intervention that can be used to combat multiple mosquito vectors of human diseases
    corecore