24,834 research outputs found

    Testing a Quantum Computer

    Get PDF
    The problem of quantum test is formally addressed. The presented method attempts the quantum role of classical test generation and test set reduction methods known from standard binary and analog circuits. QuFault, the authors software package generates test plans for arbitrary quantum circuits using the very efficient simulator QuIDDPro[1]. The quantum fault table is introduced and mathematically formalized, and the test generation method explained.Comment: 15 pages, 17 equations, 27 tables, 8 figure

    Orbital selective and tunable Kondo effect of magnetic adatoms on graphene: Correlated electronic structure calculations

    Full text link
    We have studied the effect of dynamical correlations on the electronic structure of single Co adatoms on graphene monolayers with a recently developed novel method for nanoscopic materials that combines density functional calculations with a fully dynamical treatment of the strongly interacting 3d-electrons. The coupling of the Co 3d-shell to the graphene substrate and hence the dynamic correlations are strongly dependent on the orbital symmetry and the system parameters (temperature, distance of the adatom from the graphene sheet, gate voltage). When the Kondo effect takes place, we find that the dynamical correlations give rise to strongly temperature-dependent peaks in the Co 3d-spectra near the Fermi level. Moreover, we find that the Kondo effect can be tuned by the application of a gate voltage. It turns out that the position of the Kondo peaks is pinned to the Dirac points of graphene rather than to the chemical potential.Comment: 12 pages, 7 figure

    Rotten Apples: An Investigation of the Prevalence and Predictors of Teacher Cheating

    Get PDF
    We develop an algorithm for detecting teacher cheating that combines information on unexpected test score fluctuations and suspicious patterns of answers for students in a classroom. Using data from the Chicago Public Schools, we estimate that serious cases of teacher or administrator cheating on standardized tests occur in a minimum of 4-5 percent of elementary school classrooms annually. Moreover, the observed frequency of cheating appears to respond strongly to relatively minor changes in incentives. Our results highlight the fact that incentive systems, especially those with bright line rules, often induce behavioral distortions such as cheating. Statistical analysis, however, may provide a means of detecting illicit acts, despite the best attempts of perpetrators to keep them clandestine.

    Catching Cheating Teachers: The Results of an Unusual Experiment in Implementing Theory

    Get PDF
    This paper reports on the results of a prospective implementation of methods for detecting teacher cheating. In Spring 2002, over 100 Chicago Public Schools elementary classrooms were selected for retesting based on the cheating detection algorithm. Classrooms prospectively identified as likely cheaters experienced large test score declines. In contrast, classes that had large test score gains on the original test, but were prospectively identified as being unlikely to have cheated, maintained their original gains. Randomly selected classrooms also maintained their gains. The cheating detection tools were thus demonstrated to be effective in distinguishing between classrooms that achieved large test-score gains as a consequence of cheating versus those whose gains were the result of outstanding teaching. In addition, the data generated by the implementation experiment highlight numerous ways in which the original cheating detection methods can be improved in the future.

    Additional development of large diameter carbon monofilament

    Get PDF
    The chemical vapor process for preparing a large diameter carbon-base monofilament from a BCl3, Ch4 and H2 gas mixture with a carbon substrate fiber was studied. The effect of reactor geometry, total gas flows and deposition temperature on the tensile strength of the monofilament were investigated. It was noted that consistent results could only be obtained when the carbon substrate fiber was cleaned. The strength of the monofilament was found to depend on the highest temperature and the temperature profile of the monofilament in the reactor. The strength of monofilament produced in the dc and RF reactors were found to be similar and similar alloy compositions in the monofilament were attained when the same gas ratios were used. The tensile strength of the monofilament at 500 C was found to be 60 to 70% of the room temperature tensile strength. No degradation was noted after exposure to molten aluminum

    Acquired Elliptocytosis as a Manifestation of Myelodysplastic Syndrome with Ring Sideroblasts and Multilineage Dysplasia.

    Get PDF
    Acquired elliptocytosis is a known but rarely described abnormality in the myelodysplastic syndromes (MDS). Here we report the case of an elderly male who was admitted to the hospital with chest pain, dyspnea, and fatigue and was found to be anemic with an elliptocytosis that had only recently been noted on peripheral smears of his blood. After bone marrow biopsy he was diagnosed with MDS with ring sideroblasts and multilineage dysplasia and acquired elliptocytosis. Here we report a rare case of acquired elliptocytosis cooccurring with MDS with ring sideroblasts and multilineage dysplasia

    Orbital Kondo effect in Cobalt-Benzene sandwich molecules

    Full text link
    We study a Co-benzene sandwich molecule bridging the tips of a Cu nanocontact as a realistic model of correlated molecular transport. To this end we employ a recently developed method for calculating the correlated electronic structure and transport properties of nanoscopic conductors. When the molecule is slightly compressed by the tips of the nanocontact the dynamic correlations originating from the strongly interacting Co 3d shell give rise to an orbital Kondo effect while the usual spin Kondo effect is suppressed due to Hund's rule coupling. This non-trivial Kondo effect produces a sharp and temperature-dependent Abrikosov-Suhl resonance in the spectral function at the Fermi level and a corresponding Fano line shape in the low bias conductance

    Realizable Hamiltonians for Universal Adiabatic Quantum Computers

    Get PDF
    It has been established that local lattice spin Hamiltonians can be used for universal adiabatic quantum computation. However, the 2-local model Hamiltonians used in these proofs are general and hence do not limit the types of interactions required between spins. To address this concern, the present paper provides two simple model Hamiltonians that are of practical interest to experimentalists working towards the realization of a universal adiabatic quantum computer. The model Hamiltonians presented are the simplest known QMA-complete 2-local Hamiltonians. The 2-local Ising model with 1-local transverse field which has been realized using an array of technologies, is perhaps the simplest quantum spin model but is unlikely to be universal for adiabatic quantum computation. We demonstrate that this model can be rendered universal and QMA-complete by adding a tunable 2-local transverse XX coupling. We also show the universality and QMA-completeness of spin models with only 1-local Z and X fields and 2-local ZX interactions.Comment: Paper revised and extended to improve clarity; to appear in Physical Review
    • …
    corecore