22,086 research outputs found
Additional development of large diameter carbon monofilament
The chemical vapor process for preparing a large diameter carbon-base monofilament from a BCl3, Ch4 and H2 gas mixture with a carbon substrate fiber was studied. The effect of reactor geometry, total gas flows and deposition temperature on the tensile strength of the monofilament were investigated. It was noted that consistent results could only be obtained when the carbon substrate fiber was cleaned. The strength of the monofilament was found to depend on the highest temperature and the temperature profile of the monofilament in the reactor. The strength of monofilament produced in the dc and RF reactors were found to be similar and similar alloy compositions in the monofilament were attained when the same gas ratios were used. The tensile strength of the monofilament at 500 C was found to be 60 to 70% of the room temperature tensile strength. No degradation was noted after exposure to molten aluminum
Correlated Phenotypic Transitions to Competence in Bacterial Colonies
Genetic competence is a phenotypic state of a bacterial cell in which it is
capable of importing DNA, presumably to hasten its exploration of alternate
genes in its quest for survival under stress. Recently, it was proposed that
this transition is uncorrelated among different cells in the colony. Motivated
by several discovered signaling mechanisms which create colony-level responses,
we present a model for the influence of quorum-sensing signals on a colony of
B. Subtilis cells during the transition to genetic competence. Coupling to the
external signal creates an effective inhibitory mechanism, which results in
anti-correlation between the cycles of adjacent cells. We show that this
scenario is consistent with the specific experimental measurement, which fails
to detect some underlying collective signaling mechanisms. Rather, we suggest
other parameters that should be used to verify the role of a quorum-sensing
signal. We also study the conditions under which phenotypic spatial patterns
may emerge
Scaling properties in the production range of shear dominated flows
Recent developments in turbulence are focused on the effect of large scale
anisotropy on the small scale statistics of velocity increments. According to
Kolmogorov, isotropy is recovered in the large Reynolds number limit as the
scale is reduced and, in the so-called inertial range, universal features
-namely the scaling exponents of structure functions - emerge clearly. However
this picture is violated in a number of cases, typically in the high shear
region of wall bounded flows. The common opinion ascribes this effect to the
contamination of the inertial range by the larger anisotropic scales, i.e. the
residual anisotropy is assumed as a weak perturbation of an otherwise isotropic
dynamics. In this case, given the rotational invariance of the Navier-Stokes
equations, the isotropic component of the structure functions keeps the same
exponents of isotropic turbulence. This kind of reasoning fails when the
anisotropic effects are strong as in the production range of shear dominated
flows. This regime is analyzed here by means of both numerical and experimental
data for a homogeneous shear flow. A well defined scaling behavior is found to
exist, with exponents which differ substantially from those of classical
isotropic turbulence. Contrary to what predicted by the perturbation approach,
such a deep alteration concerns the isotropic sector itself. The general
validity of these results is discussed in the context of turbulence near solid
walls, where more appropriate closure models for the coarse grained
Navier-Stokes equations would be advisable.Comment: 4 pages, 4 figure
Shape-preserving and unidirectional frequency conversion using four-wave mixing Bragg scattering
In this work, we investigate the properties of four-wave mixing Bragg
scattering in a configuration that employs orthogonally polarized pumps in a
birefringent waveguide. This configuration enables a large signal conversion
bandwidth, and allows strongly unidirectional frequency conversion as undesired
Bragg-scattering processes are suppressed by waveguide birefringence. Moreover,
we show that this form of four-wave mixing Bragg scattering preserves the
(arbitrary) signal pulse shape, even when driven by pulsed pumps.Comment: 11 pages + refs, 5 figure
Particles in RSOS paths
We introduce a new representation of the paths of the Forrester-Baxter RSOS
models which represents the states of the irreducible modules of the minimal
models M(p',p). This representation is obtained by transforming the RSOS paths,
for the cases p> 2p'-2, to new paths for which horizontal edges are allowed at
certain heights. These new paths are much simpler in that their weight is
nothing but the sum of the position of the peaks. This description paves the
way for the interpretation of the RSOS paths in terms of fermi-type charged
particles out of which the fermionic characters could be obtained
constructively. The derivation of the fermionic character for p'=2 and p=kp'+/-
1 is outlined. Finally, the particles of the RSOS paths are put in relation
with the kinks and the breathers of the restricted sine-Gordon model.Comment: 15 pages, few typos corrected, version publishe
- …