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Abstract: In this work, we investigate the properties of four-wave mixing Bragg scattering
driven by orthogonally polarized pumps in a birefringent waveguide. This configuration enables
a large signal conversion bandwidth, and allows strongly unidirectional frequency conversion as
undesired Bragg-scattering processes are suppressed by waveguide birefringence. Moreover, we
show that this form of Bragg scattering preserves the (arbitrary) signal pulse shape, even when
driven by pulsed pumps.
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
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1. Introduction

All-optical nonlinear signal processing has opened new doors within information processing and
optical communication [1]. By utilizing the third-order nonlinearity in optical fibers or integrated
waveguides, signal processing tasks such as amplification [2, 3], regeneration [4, 5], nonlinearity
mitigation [6, 7], and data-format conversion [8], have all been demonstrated. The common
workhorse enabling these operations is four-wave mixing (FWM), which comes in different
flavors depending on the required capability.
One particular method of all-optical nonlinear signal processing is FWM Bragg scattering

(BS), in which an input signal (s) is up- or downshifted to an output signal (r) by the frequency
difference between two pump lasers (p and q), as illustrated in Figs. 1(a) and (b). In contrast to
FWM processes such as parametric amplification and phase conjugation, which are inherently
noisy, BS enables full conversion of an input signal without adding noise [9]. For this reason, BS
has attracted attention in quantum photonics as it allows signal processing of single- or few-photon
level signals [10–13]. This could be useful in quantum communications for shifting quantum
signals between telecom wavelengths, where the transmission loss in optical fibers is lowest, and
visible wavelengths, where superior detectors, quantum memories, or single-photon sources are
likely to operate [12, 14–17]. Shifting single photons between wavelength channels could be
used for routing signals across quantum networks, or for quantum information processing with
frequency encoding schemes [18–20]. Similarly, BS has applications in classical communications
and fast all-optical signal processing [21–24].
One practical challenge in BS is that of frequency unidirectionality. As BS allows both up-

and downconversion, only one of these processes should be phase matched at a time. If this
is not the case, part of the signal power is up-shifted and part is down-shifted [15, 24–27].
This bidirectionality (r (1)) is illustrated in Fig. 1(c), which also shows the potential of cascaded
conversion in the same direction (r (2)). In order to achieve a high conversion efficiency (CE),
these undesired processes must be suppressed by designing them to have large phase mismatches.
Another, yet unresolved, challenge in the framework of BS is that of achieving shape-

ωω0
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p q
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Fig. 1. (a) Near- and (b) distant frequency conversion by BS for fields placed symetrically
around the zero-dispersion frequency ω0. The input signal s is down-shifted by δω in
frequency to r by the two pumps, p and q. The separation between the average pump
frequency and the average frequency of the input and converted signal is denoted ∆ω. The
direction of the arrows indicate direction of energy flow, which may be reversed to achieve
up-conversion. (c) In the near configuration, spurious Bragg scattering processes, generating
the additional fields r(1) and r(2), may limit the conversion efficiency from s to r .
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independent and shape-preserving frequency conversion when the process is driven by short
pump pulses. Intuitively, the use of pulsed pumps rather than continuous-wave (CW) pumps is
advantageous in the sense that far lower average pump powers are required to achieve efficient
conversion. However, in the setting of pulsed pumps, the nonlinear interaction strength varies
in time, making the attainable CE strongly dependent on the temporal mode of the input
signal [18, 28, 29].

In this work, we seek solutions to these challenges by investigating a scheme for BS where the
two pump pulses are polarized on orthogonal axes of a nonlinear birefringent waveguide, or as
recently demonstrated, propagate in different spatial modes of a higher-order mode fiber [30, 31].
We show that this configuration allows highly unidirectional frequency conversion with the
conversion direction being controlled by the polarization of the input signal. Furthermore, the
configuration enables conversion of high-bandwidth signals, and preserves the signal temporal
shape even when driven by short pump pulses. Additionally, in contrast to the standard BS
configuration, where the fields must be centered symmetrically around a waveguide zero-
dispersion frequency (ZDF), this new scheme allows phase matching to be achieved in both the
normal- or the anomalous dispersion regime.

2. Standard configuration

2.1. Phase matching and bandwidth

First, we discuss the standard configuration for BS, where all the fields are co-polarized, and are
centered around a ZDF [32]. We label the input signal s, the output r , and the pumps p and q, as
shown in Fig. 1. The phase mismatch for the down-shifting case [Figs. 1(a) and (b)], is given by

∆β = β(ωs) − β(ωr ) + β(ωp) − β(ωq) + γ(Pq − Pp), (1)

where β(ω) is the wavenumber at angular frequency ω, γ is the nonlinear coefficient proportional
to the intensity-dependent refractive index n2, and Pp and Pq are the pump powers. Notably, the
nonlinear contribution to the wavenumber-matching condition cancels if the two pump powers
are equal. The wavenumber as a function of frequency can be expanded as

β(ω) = β0 + β1ω + β3ω
3/6 + O(ω4), (2)

whereω is measured relative to the ZDF, in which case the second-order dispersion term vanishes,
i.e. β2 = 0. For balanced pump powers, wavenumber matching, i.e. ∆β = 0, is obtained by
placing the fields symmetrically around the ZDW, such that ωs = −ωp and ωr = −ωq , leading
to cancellation of the odd terms in Eq. (1). Such placement of the fields furthermore leads to
group-velocity matching of s to p, and of r to q, as can be seen from the group slowness

β′(ω) = dβ/dω = β1 + β3ω
2/2 + O(ω3). (3)

Notably, the third-order dispersion coefficient β3 plays an important role in setting the allowed
signal bandwidth, and in determining the degree to which other nonlinear processes are suppressed,
or allowed. To estimate the phase-matching bandwidth, we allow ωs to deviate from −ωp (and
hence ωr from −ωq), while fixing δω = ωs −ωr . Thereby, the wavenumber mismatch is given by

∆β =
β3δω∆ω

2
(ωp + ωs), (4)

with ∆ω being the separation between the average frequency of the pumps and that of the
input/output signal, as shown in Fig 1(a). In a waveguide of length L, efficient conversion occurs
for |∆βL | � 1, resulting in the following condition for the two-sided signal bandwidth Ωs

Ωs �
���� 4
β3δω∆ωL

���� . (5)
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2.2. Unidirectionality of the standard configuration

Consider now the influence of spurious BS processes, which are sketched in Fig. 1(c). These
processes must be well suppressed in order to obtain a high CE in the desired direction [33]. To
quantify this, we consider the configuration for desired down-shifting from s to r. When the
desired process is perfectly wavenumber matched, the wavenumber mismatch for the spurious
up-shifting process, s to r (1), is given by

∆βspur = β(ωs) − β(ωs + δω) − β(ωp) + β(ωq) = β3ωpδω
2, (6)

with ωs + δω being the frequency of up-shifted light. From this, we deduce the condition for
suppressing the unwanted up-shifting process (|∆βspurL | � 1)

|β3ωpδω
2L | � 1, (7)

which shows that the spurious BS process may be particularly difficult to suppress for small
frequency shifts δω. A very similar condition applies for suppressing the process where converted
light at ωr is down-shifted a second time, i.e. r to r (2):��β3ωqδω

2L
�� � 1. (8)

Notably, by combining the conditions for unidirectionality [Eqs. (7) and (8)] with the attainable
BS bandwidth [Eq. (5)], one finds that unidirectional operation is only possible for a signal
bandwidth that is much smaller than the frequency shift, i.e. δω � Ωs . This could be detrimental
to applications of frequency conversion for dense wavelength division multiplexing systems,
where the channel separation is comparable to the bandwidth of each channel, and where spurious
BS could lead to unintended interference with other channels.
The effect of the wavenumber mismatches given in Eqs. (7) and (8), is quantified by solving

the coupled-mode equations for the BS process, including multiple signal modes (for details, see
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Fig. 2. (a) Maximal conversion efficiency as a function of the dimensionless mismatch
parameter Θmis = β3∆ωδω

2L. For small mismatches, undesired Bragg scattering modes,
r(n), become significant, and thereby limit the conversion efficiency from s to r . Inset shows
the phase-matching diagram interpreted as a parabola in (ω, β1)-space and the placements
of the various fields. (b) and (c) show the relative power transfer versus waveguide distance
between the input signal s (dashed-dotted, red) the desired output r (full, blue), the undesired
bidirectional output r(1) (dashed, green), and the cascaded converted output r(2) (dashed-
dotted, black), for Θmis = 9 and Θmis = 20, respectively.
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Appendix A). Figure 2(a) shows the highest attainable CE as a function of the dimensionless
product Θmis = β3∆ωδω

2L, for desired down-conversionsee [see Fig. 1(c)]. The pump power
(which is CW and balanced, Pp = Pq) is in all cases chosen such that a CE of unity is obtained
without the inclusion of the undesired Bragg-scattering modes, r (n) (i.e. 2γPpL = π/2). For
values Θmis > 50, the attainable CE is near unity as undesired Bragg scattering processes are
strongly suppressed by the large wavenumber mismatches given in Eqs. (7) and (8). However,
for small values of the dimensionless product, the CE is limited to far below unity as a result of
significant coupling to undesired signal modes. Furthermore, the CE-curve features small, and
decaying, oscillations that arise due to the dynamical interaction between the multiple signal
modes, as shown in Figs. 2(b) and (c). As a consequence of the quadratic dependence of Θmis on
δω, small frequency shifts are particular difficult to achieve in a unidirectional fashion. As an
example, for a 100-m long optical fiber with a third-order-dispersion coefficient of β3 = 1 ps3/km,
a frequency shift of δω = 2 THz with the pumps placed ∆ω = 20 THz from the signals, yields
Θmis = 8. That is, according to Fig. 2, the frequency conversion process is far from unidirectional.
This bidirectionality is an even larger hurdle in integrated waveguides, for which the length is
limited to the order of centimeters, something which has been observed by multiple research
groups in recent years [25–27]. Recently, however, it was demonstrated that the bidirectionality
could be alleviated by exploiting birefringence [34], and in the following, we improve upon this
concept by taking a closer look at the cross-polarized BS configuration.

3. Cross-polarized configuration

3.1. Phase matching and bandwidth

To address the problems encountered with the standard configuration, we now consider an
alternative setup where the two pumps are polarized on orthogonal axes of a birefringent
nonlinear waveguide. The nonlinear waveguide is assumed to consist of a material for which the
third-order susceptibility tensor takes the form χ

(3)
i jkl
= aδi jkl + b(δi jδkl + δikδjl + δilδjk) [35],

where the indices i, j, k, l refer to the polarization state of an electric field and δ is the Kroenecker
delta function. This form of the third-order susceptibility tensor encapsulates the properties of,
for example, a silica fiber or a silicon waveguide, and entails that the converted output signal is
polarized orthogonally to the input signal, as shown in Fig. 3(a).
We consider the case where the involved fields are placed far from the waveguide ZDF,

resulting in a non-zero group-velocity dispersion β2, which may be either negative or positive.
The group-velocity dispersion is assumed to dominate over higher-order dispersion terms, and is
assumed identical for the principle axes of the birefringent waveguide. Expanding the wavenumber
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Fig. 3. (a) In cross-polarized BS the converted output signal is orthogonal in polarization to
the input signal. (b) The direction of conversion can be controlled by setting the polarization
of the input signal. (c) Undesired BS processes are suppressed by waveguide birefringence,
making the cross-polarized configuration unidirectional.
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around the average frequency ωav, the wavenumbers for the two principle axes are given as

β±(ω) = β0± + β1±ω +
β2
2
ω2 + O(ω3), (9)

where ω is relative to ωav, and ± indicates the slow (+) and fast (−) axis of the waveguide,
respectively. If we let pump p be polarized on the slow axis (and, consequently, let pump q be
polarized on the fast axis), we find from Eq. (9) that the cross-polarized BS process is wavenumber
matched, i.e. ∆β = 0, whenever ωq − ωp = ∆β1/β2, where ∆β1 ≡ β1+ − β1− > 0. Notably, the
process occurs, exactly as does vector-modulation instability in birefringent waveguides, for both
normal (β2 > 0) and anomalous (β2 < 0) dispersion [36,37]. By our convention one must choose
ωq > ωp for normal dispersion, and ωq < ωp in the case of anomalous dispersion.
Remarkably, in complete contrast to the standard configuration, which allows perfect phase

matching only for one specific signal frequency, the cross-polarized process is wavenumber
matched independently of the signal frequency, provided the frequency separation between
the pumps is chosen judiciously to ∆β1/β2. Moreover, the direction of the frequency shift is
determined by the polarization of the input signal as sketched in Fig. 3(b). More specifically, if
we let the input signal be polarized along the fast axis, we find ωr = ωs − ∆β1/β2 resulting in a
down-shift (an up-shift) for normal (anomalous) dispersion, while if the input signal is polarized
along the slow axis, we obtain ωr = ωs + ∆β1/β2 giving rise to an up-shift (a down-shift) for
normal (anomalous) dispersion.

The phase-matching condition of the cross-polarized BS process furthermore leads to pairwise
group-velocity matching of the pumps (p to q), and the signals (s to r), as can be seen by insertion
of the shift δω = ∆β1/β2 into

β′±(ω) = β1± + β2ω + O(ω2). (10)

A similar group-velocity-matching condition has recently been shown to enable the generation of
spectrally uncorrelated photon pairs [38–40], and we consider its implications in more details in
Sec. 4.

3.2. Unidirectionality of the cross-polarized configuration

As for the standard configuration, we now consider the effect of spurious BS. The wavenumber
mismatch of this process [s to r (1) in Fig. 3(c)], can be written as

∆βspur = 2∆β0 − ∆β1 (∆ω + 2δω) , (11)

with ∆β0 ≡ β0+ − β0−. Thus, to suppress the spurious BS, we require����4π L
LB
− ∆β1 (∆ω + 2δω) L

���� � 1, (12)

where we have introduced the mode beat length of the birefringent waveguide, LB = 2π/∆β0.
Similarly, the suppression of the secondary BS process [r to r (2) in Fig. 3(c)], requires����4π L

LB
− ∆β1 (∆ω − 2δω) L

���� � 1, (13)

differing from Eq. (12) only by the sign in front of the frequency shift δω. Noteworthy, in the
cross-polarized configuration, the wavenumber mismatches of the undesired BS process contain
one term inversely proportional to the beat length LB, and another term proportional to the
difference in inverse group velocity ∆β1. For standard birefringent fibers with beat lengths on the
order of 1–10 mm [41], the first term is typically orders of magnitudes larger than the second
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term for which ∆β1 ≈ 1 ps/m (and ∆ω ≈ 5–20 THz) [31, 37]. This is also the case in integrated
birefringent waveguides, where the beat length can readily be made smaller than hundreds of
micrometer at optical wavelengths [42,43]. Hence, the condition for suppressing spurious BS
effectively becomes identical to the condition for preventing polarization-mode coupling, which
is exactly the primary ability of these kinds of birefringent waveguides.

4. Shape-preserving frequency conversion

The use of pulsed, rather than CW, pumps, entails the need for far smaller average pump-power
levels. However, this also significantly complicates the spatial-temporal dynamics, and requires
careful synchronization of the interacting fields. Moreover, the use of pulsed pumps typically
prevents optimal signal CE for more than a single (or few) temporal shape(s), and results in a
significantly altered temporal shape of the converted signal [28]. In the following, we show that
the cross-polarized BS configuration, which was introduced in Sec. 3, allows preservation of the
signal temporal shape and, moreover, enables shape-independent frequency conversion.

4.1. Pump dynamics

Let us start by considering the pump dynamics. In our configuration, phase matching dictates
co-propagating pumps (β1p = β1q = β̄) and co-propagating signals (β1s = β1r ). The undepleted
coupled pump equations take the form(

∂z + β̄∂t
)
Ap = iγ

(
|Ap |2 +

2
3
|Aq |2

)
Ap, (14)(

∂z + β̄∂t
)
Aq = iγ

(
|Aq |2 +

2
3
|Ap |2

)
Aq, (15)

in which the amplitudes Ap,q are slowly varying envelopes in units of W1/2, and are assumed
unaffected by intra-pulse dispersion. In Eqs. (14) and (15), the terms describing cross-phase
modulation contain factors of 2/3, representing the case of orthogonally polarized fields in an
isotropic material such as fused silica. This factor may be different if one considers the BS process
using higher-order spatial modes [30, 31], or in a material with an anisotropic Kerr nonlinearity
such as crystalline silicon [44]. We stress, however, that what follows does not depend on the
value of this prefactor.

Optimal conversion in the third-order Kerr nonlinearity occurs when the two pump pulses
are temporally matched, and we therefore consider the case where the initial pump pulses obey
Ap0 (0, t) = Aq0 (0, t). With this initial condition, the pump powers are balanced, which optimizes
the nonlinear interaction per total amount of pump power, and the solution to the pump evolution
becomes

Ap(z, t) = Ap0 (t − β̄z) exp
(

5iγ
3
|Ap0 (t − β̄z)|2z

)
, (16)

with Aq(z, t) = Ap(z, t). The exponential in Eq. (16) accounts for both self- and cross-phase
modulation, which contribute in the same manner as the pump pulses are group-velocity matched.

4.2. Signal dynamics

Consider now the Heisenberg-picture coupled-mode equations for the signal-mode operators. In
the signal reference frame, so that now β̄ = β1p − β1s , we have

∂z

[
as(z, t)
ar (z, t)

]
=M(z, t)

[
as(z, t)
ar (z, t)

]
, (17)
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where the system matrix M is given by

M(z, t) = iγ
[
2|Aq(z, t)|2 + 2

3 |Ap(z, t)|2 2
3 A∗p(z, t)Aq(z, t)

2
3 Ap(z, t)A∗q(z, t) 2|Ap(z, t)|2 + 2

3 |Aq(z, t)|2
]
, (18)

where we have chosen s (r) to be co-polarized with q (p). In our case, we may define A(z, t) ≡
Ap(z, t) = Aq(z, t), recasting M into the simple form

M(z, t) = 2iγ
3

[
4 1
1 4

]
|A(z, t)|2, (19)

in which the matrix part is no longer spatially dependent. As a result, M commutes with itself at
different spatial positions, i.e. [M(z′, t),M(z′′, t)] = 0, and therefore, Eq. (17) is solved by [45][

as(z, t)
ar (z, t)

]
=

[
Gss(z, z0, t) Gsr (z, z0, t)
Grs(z, z0, t) Grr (z, z0, t)

] [
as(z0, t)
ar (z0, t)

]
= G(z, z0, t)

[
as(z0, t)
ar (z0, t)

]
, (20)

where the 2 × 2 matrix transfer function is of the form G(z, z0, t) = exp
[∫ z

z0
dz′M(z′, t)

]
. This

fact allows us to directly write down the solution as

G(L, 0, t) = exp [4iξ(t)] ×
[

cos [ξ(t)] i sin [ξ(t)]
i sin [ξ(t)] cos [ξ(t)]

]
, (21)

where we have defined the effective interaction strength

ξ(t) = 2γ
3

∫ z=L

z0=0
dz′ |A0(t − β̄z′)|2. (22)

The exponential in Eq. (21) encompasses the combined effects of cross-phase modulation
from the two pump pulses, whereas the matrix describes the time-dependent beam-splitter-like
transformation, which is typical for nonlinear frequency-conversion processes [46]. As is apparent
from Eq. (22), the CE efficiency of a time slice tk depends on the interaction strength experienced
by that time slice according to sin2[ξ(tk)]. Therefore, in general, the converted signal is a distorted
version of the input signal. However, if the input signal experiences a complete temporal collision
with the pumps (a complete walk-off), then the CE is time-independent (CW-like), and the
signal shape is preserved. Remarkably, this shape-preserving property, which is unique to our
configuration, holds for both arbitrary input signal- and pump shapes.

4.3. Examples with Gaussian pumps

We now consider a few examples, and, for simplicity, consider Gaussian-shaped input pump
pulses of the form

A0(t) =
(

E
π1/2τ

)1/2
exp

[
−(t + t0)2/(2τ2)

]
, (23)

where E is the pulse energy and τ is the pulse duration (related to the root-mean square width
TRMS according to τ =

√
2TRMS). The parameter t0 determines the initial pulse center in our

reference frame, and henceforth t0 = β̄L/2 is used to ensure that the pump pulses are centered on
t = 0 after a propagation distance of z = L/2. With the pulse shape in Eq. (23), one can readily
show that Eq. (22) takes the explicit form

ξ(t) = γE
3β̄

[
erf

(
t
τ
+
ζ

2

)
− erf

(
t
τ
− ζ

2

)]
, (24)
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Fig. 4. (a) Gaussian- and (b) first-order Hermite-Gaussian signal s inputs, which multiplied
by (c) the self-transfer function Gss and (d) the cross-transfer function Grs , yields, (e) the
remaining signal s outputs, and (f) the converted signal r outputs, respectively. The walk-off
parameter, ζ = 2, does not enable a full collision between the pumps and the signal resulting
in temporally localized conversion.

where erf is the error function, and we have defined the dimensionless walk-off parameter
ζ = β̄L/τ, which quantifies the degree of walk-off between the pumps and a time slice
of the signal. Notably, if a time slice tk experiences a full collision with the pumps, then
ξ(tk) = 2γE/(3β̄), and the CE (of this time slice) is then only dependent on the interaction
strength γE/β̄, which is a product of the nonlinearity γ, the pump peak power E/τ, and the
walk-through distance τ/β̄.

Figure 4 illustrates the conversion dynamics in the case of ζ = 2 for two different signal input
pulse shapes: (a) a Gaussian input, and (b) a first-order Hermite-Gaussian input. The interaction
strength is chosen such that the center of the signal, i.e. t = 0, is fully converted as illustrated with
the transfer functions in Figs. 4(c) and (d). However, a value of ζ = 2 only allows for a moderate
degree of walk-off, resulting in a temporally localized conversion as shown in Figs. 4(e) and (f)
for the remaining s-output and converted r-output, respectively. Notably, as the Hermite-Gaussian
input signal contains only a small part of its energy around the pulse center, the total CE is only
53% compared to 85% for the Gaussian input signal. Moreover, the converted signal is temporally
narrower than the input signal, but is spectrally broadened due to the chirp received as a result of
cross-phase modulation from the pumps.

The case of ζ = 8 is shown in Fig. 5, using the same input signal pulses as in Fig. 4. Now the
walk-off allows a full pump-signal collision, giving rise to transfer functions that are approximately
constant within the signal duration, as seen in Figs. 5(c) and (d). This results in CEs of practically
unity for both the Gaussian and the first-order Hermite Gaussian input signals, demonstrating that
the configuration enables conversion of arbitrary temporal shapes with high efficiency. Moreover,
irrespective of the signal input shape, this temporal shape is preserved in the frequency conversion
process, as seen from Fig. 5(f).
Finally, it is highly instructive to make a comparison between the proposed pulsed scheme

and the corresponding CW pumped configuration. In the CW pumped regime, the CE is simply
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Fig. 5. (a) Gaussian- and (b) first-order Hermite-Gaussian signal s inputs, which multiplied
by (c) the self-transfer function Gss and (d) the cross-transfer function Grs , yields, (e) the
remaining signal s outputs, and (f) the converted signal r outputs, respectively. The walk-off
parameter, ζ = 8, in this case enables a full collision between the pumps and the signal,
resulting in shape-preserving conversion of both considered input signals.

determined by the product γPcwL. On the other hand, when employing pulsed pumps, the
conversion process typically becomes complicated, resulting in the CE being strongly dependent
on the exact temporal shape, and timing, of the input signal. However, in this configuration, when
the pumps are allowed to completely ‘scan’ through the signal, which somewhat alleviates the
synchronization requirements between the pumps and the signal, the CE [see Eqs. (21) and (24)]
becomes time-independent. Thus, one can think of this configuration as being quasi CW-like,
with a conversion efficiency being determined solely by the interaction strength γE/β̄. Hence,
in comparison to the CW case, the power-length product PcwL is replaced by E/β̄. Thereby, to
maintain a given CE moving from the CW regime to the pulsed regime, the peak power should
merely satisfy Pp = E/(π1/2τ) = Pcw β̄L/(π1/2τ) ≈ 5Pcw, where we have used that ζ ≈ 8 for a
full collision with comparable signal and pump durations (see Fig. 5).

5. Discussion

In recent years, there have been proposals for using BS to perform all-optical switching and
logic operations [22, 23]. The cross-polarized configuration adds an extra degree of freedom:
polarization, and allows parallel operation of both polarization modes, which in the process are
converted in opposite directions. Moreover, this scheme bears potential for enabling very large
signal-conversion bandwidths as described in Sec. 3.1, where we assumed a simple waveguide-
dispersion profile with polarization-independent group-velocity dispersion. Although this can
be the design target, in practice, the waveguide dispersion is only approximately described by
Eq. (9), and one may need to include a polarization-dependent group-velocity dispersion (β2±).
A more detailed treatment, which includes this effect, results in the frequency shift being given
by δω = ∆β1/β2,av , with β2,av = (β2+ + β2−)/2. Moreover, this gives a signal bandwidth that
scales as [(∆ω/2 + δω)∆β2L]−1, where, as previously, ∆ω = |(ωp + ωq)/2 − (ωs + ωr )/2|, and
∆β2 = β2+ − β2−. Notably, the signal bandwidth scales inversely with ∆β2, which underpins the
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possibility for attaining ultra-high conversion bandwidth by careful dispersion tailoring. One
also finds, that the inclusion of a polarization-dependent group-velocity dispersion opens the
possibility for fine-tuning the frequency shift δω simply by tuning the pump frequencies. Such
tunability was not predicted by the simpler model neglecting polarization-dependent dispersion.

Finally, it is worth noticing that the cross-polarized BS process is designed to occur when the
fields are placed far away from a waveguide ZDF. For this reason, the considered process is, in
comparison to the standard BS configuration, to a lesser degree accompanied by other parasitic
nonlinear processes such as parametric amplification. This is especially the case if the process
is operated in the normal dispersion regime, for which scalar modulation instability is strongly
suppressed. Moreover, spontaneous Raman scattering can, to a large extent, be avoided by cooling
the nonlinear fiber and by placing the pumps on the low-frequency side of the signals [33], or by
using a crystalline material such as silicon.

6. Conclusion

We have investigated the properties of a four-wave mixing Bragg-scattering configuration,
which employs cross polarized pumps in a birefringent nonlinear waveguide. Phase matching of
this process, which can be achieved in both the anomalous or the normal dispersion regimes,
occurs when the two pumps are placed in frequency such that they are group-velocity matched.
The cross-polarized configuration has four distinct advantages compared to the standard co-
polarized Bragg-scattering configuration: (i) It allows a large signal bandwidth, which is not
limited by the size of the frequency shift, (ii) the direction of conversion (up or down) is
controlled by the polarization of the input signal, (iii) conversion is entirely unidirectional as
undesired Bragg-scattering processes are suppressed by waveguide birefringence, and (iv) the
pairwise group-velocity matching (pump-to-pump and signal-to-signal) enables shape-preserving
frequency conversion of an arbitrary signal input temporal waveform.

A. Coupled-mode equations with multi-level Bragg scattering

To model the standard co-polarized BS process including multiple signal modes we introduce
multiple additional converted signal frequencies according to ωr (n) = ωs + δω(n+ 1)/2 for n odd
(up-converted fields), and ωr (n) = ωs − δω(n/2 + 1) for n even (down-converted fields), where
δω = ωq −ωp > 0, [see also inset of Fig. 2(a)]. For each of these frequencies, the corresponding
wavenumber is obtained from Eq. (2), resulting in the wavenumber mismatches

∆βj→k = β(ωj) − β(ωk) ±
(
β(ωp) − β(ωq)

)
, (25)

where + is chosen for ωj > ωk and − is chosen for ωj < ωk . Note, that this construction
entails ∆βj→k = −∆βk→j , as required. With the input fields placed such that ωs = −ωp, with
frequencies measured relative to the waveguide ZDF, we have, for example, ∆βs→r = 0, but
∆βs→r (1) , 0. The BS process only allows coupling between signal fields separated by δω, and
thus the set of first-order coupled ordinary differential equations takes the form

∂zas = 2iγ
(
|Ap |2 + |Aq |2

)
as + 2iγ

(
A∗pAqar + ApA∗qar (1)e

i∆β
r (1)→s

)
, (26)

∂zar = 2iγ
(
|Ap |2 + |Aq |2

)
ar + 2iγ

(
A∗pAqar (2)e

i∆β
r (2)→r + ApA∗qas

)
, (27)

∂zar (1) = 2iγ
(
|Ap |2 + |Aq |2

)
ar (1) + 2iγ

(
A∗pAqasei∆βs→r (1) + ApA∗qar (3)e

i∆β
r (3)→r (1)

)
, (28)

∂zar (2) = 2iγ
(
|Ap |2 + |Aq |2

)
ar (2) + 2iγ

(
A∗pAqar (4)e

i∆β
r (4)→r (2) + ApA∗qarei∆βr→r (2)

)
, (29)

...
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where the vertical dots present the equations for ar (n>2) . In the numerical simulations used to
create Fig. 2, we included, for each value of Θmis, N additional fields so that negligible power
transfer was observed to the most detuned fields, i.e. n = N − 1 and n = N .
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