5 research outputs found

    Satellite-Based Assessment of Grassland Conversion and Related Fire Disturbance in the Kenai Peninsula, Alaska

    Get PDF
    Spruce beetle-induced (Dendroctonus rufipennis (Kirby)) mortality on the Kenai Peninsula has been hypothesized by local ecologists to result in the conversion of forest to grassland and subsequent increased fire danger. This hypothesis stands in contrast to empirical studies in the continental US which suggested that beetle mortality has only a negligible effect on fire danger. In response, we conducted a study using Landsat data and modeling techniques to map land cover change in the Kenai Peninsula and to integrate change maps with other geospatial data to predictively map fire danger for the same region. We collected Landsat imagery to map land cover change at roughly five-year intervals following a severe, mid-1990s beetle infestation to the present. Land cover classification was performed at each time step and used to quantify grassland encroachment patterns over time. The maps of land cover change along with digital elevation models (DEMs), temperature, and historical fire data were used to map and assess wildfire danger across the study area. Results indicate the highest wildfire danger tended to occur in herbaceous and black spruce land cover types, suggesting that the relationship between spruce beetle damage and wildfire danger in costal Alaskan forested ecosystems differs from the relationship between the two in the forests of the coterminous United States. These change detection analyses and fire danger predictions provide the Kenai National Wildlife Refuge (KENWR) ecologists and other forest managers a better understanding of the extent and magnitude of grassland conversion and subsequent change in fire danger following the 1990s spruce beetle outbreak

    Satellite-Based Assessment of Grassland Conversion and Related Fire Disturbance in the Kenai Peninsula, Alaska

    Get PDF
    Spruce beetle-induced (Dendroctonus rufipennis (Kirby)) mortality on the Kenai Peninsula has heightened local wildfire risk as canopy loss facilitates the conversion from bare to fire-prone grassland. We collected images from NASA satellite-based Earth observations to visualize land cover succession at roughly five-year intervals following a severe, mid-1990's beetle infestation to the present. We classified these data by vegetation cover type to quantify grassland encroachment patterns over time. Raster band math provided a change detection analysis on the land cover classifications. Results indicate the highest wildfire risk is linked to herbaceous and black spruce land cover types, The resulting land cover change image will give the Kenai National Wildlife Refuge (KENWR) ecologists a better understanding of where forests have converted to grassland since the 1990s. These classifications provided a foundation for us to integrate digital elevation models (DEMs), temperature, and historical fire data into a model using Python for assessing and mapping changes in wildfire risk. Spatial representations of this risk will contribute to a better understanding of ecological trajectories of beetle-affected landscapes, thereby informing management decisions at KENWR

    Satellite-Based Assessment of Grassland Conversion and Related Fire Disturbance in the Kenai Peninsula, Alaska

    No full text
    Spruce beetle-induced (Dendroctonus rufipennis (Kirby)) mortality on the Kenai Peninsula has been hypothesized by local ecologists to result in the conversion of forest to grassland and subsequent increased fire danger. This hypothesis stands in contrast to empirical studies in the continental US which suggested that beetle mortality has only a negligible effect on fire danger. In response, we conducted a study using Landsat data and modeling techniques to map land cover change in the Kenai Peninsula and to integrate change maps with other geospatial data to predictively map fire danger for the same region. We collected Landsat imagery to map land cover change at roughly five-year intervals following a severe, mid-1990s beetle infestation to the present. Land cover classification was performed at each time step and used to quantify grassland encroachment patterns over time. The maps of land cover change along with digital elevation models (DEMs), temperature, and historical fire data were used to map and assess wildfire danger across the study area. Results indicate the highest wildfire danger tended to occur in herbaceous and black spruce land cover types, suggesting that the relationship between spruce beetle damage and wildfire danger in costal Alaskan forested ecosystems differs from the relationship between the two in the forests of the coterminous United States. These change detection analyses and fire danger predictions provide the Kenai National Wildlife Refuge (KENWR) ecologists and other forest managers a better understanding of the extent and magnitude of grassland conversion and subsequent change in fire danger following the 1990s spruce beetle outbreak

    \u3ci\u3eDrosophila\u3c/i\u3e Muller F Elements Maintain a Distinct Set of Genomic Properties Over 40 Million Years of Evolution

    Get PDF
    The Muller F element (4.2 Mb, ~80 protein-coding genes) is an unusual autosome of Drosophila melanogaster; it is mostly heterochromatic with a low recombination rate. To investigate how these properties impact the evolution of repeats and genes, we manually improved the sequence and annotated the genes on the D. erecta, D. mojavensis, and D. grimshawi F elements and euchromatic domains from the Muller D element. We find that F elements have greater transposon density (25–50%) than euchromatic reference regions (3–11%). Among the F elements, D. grimshawi has the lowest transposon density (particularly DINE-1: 2% vs. 11–27%). F element genes have larger coding spans, more coding exons, larger introns, and lower codon bias. Comparison of the Effective Number of Codons with the Codon Adaptation Index shows that, in contrast to the other species, codon bias in D. grimshawi F element genes can be attributed primarily to selection instead of mutational biases, suggesting that density and types of transposons affect the degree of local heterochromatin formation. F element genes have lower estimated DNA melting temperatures than D element genes, potentially facilitating transcription through heterochromatin. Most F element genes (~90%) have remained on that element, but the F element has smaller syntenic blocks than genome averages (3.4–3.6 vs. 8.4–8.8 genes per block), indicating greater rates of inversion despite lower rates of recombination. Overall, the F element has maintained characteristics that are distinct from other autosomes in the Drosophila lineage, illuminating the constraints imposed by a heterochromatic milieu
    corecore