44 research outputs found
Ubiquitous atmospheric contamination by tobacco smoke : nicotine and a new marker for tobacco smoke-derived particulate matter, nicotelline
Second Hand Smoke (SHS) has always been primarily linked with indoor pollution. To date nicotine was the favoured marker for SHS alongside measurements of particulate matter (PM) levels. As nicotine is mainly found in the gas-phase and reactive in the outdoor environment it is not ideal as a marker for the SHS-driven particulate component in PM. Nicotelline, a minor tobacco alkaloid that is stable, found almost exclusively in the particle phase and easy to quantify even at low concentrations, is being proposed as a better marker. It is the first study using bisulfate-treated quartz fiber filters to show that airborne nicotine (gas+particle phase) is directly proportional to airborne nicotelline in countries that have different climates. The analytical method developed has
been validated to show that the use of untreated filters is suitable for the quantification of nicotelline even at low concentrations. Although nicotelline exhibits a seasonal and geographical variation, this is the first comprehensive study which demonstrates the ubiquitous presence of nicotelline in PM from outdoor air samples collected in the USA (0.1–285.6 pgm-3), UK (2.3–9.1 pgm-3), Hong Kong (3.8–109.3 pgm-3) and Malta (4.2–280.8 pgm-3). From the nicotelline apportionment factor of 1589 ng/mg of tobacco smoke PM we estimate the fraction of outdoor airborne PM derived from SHS to be in the range of 0.03–0.08%. While it is unlikely for tobacco smoke-related toxics in outdoor PM to be considered a major health hazard, in heavily polluted microenvironments this marker would be useful in tracing the presence of SHS and emerging Third Hand Smoke components that form or are found in airborne and settled PM that could induce serious health effects.peer-reviewe
Pharmacogenetics of Nicotine Metabolism in Twins: Methods and Procedures
This article describes a pharmacogenetic investigation of nicotine metabolism in twins. One hundred and thirty-nine twin pairs (110 monozygotic and 29 dizygotic) were recruited and assessed for smoking status, zygosity, and health conditions known or suspected to affect drug metabolism. Participants underwent a 30-minute infusion of stable isotope-labeled nicotine and its major metabolite, cotinine, followed by an 8-hour in-hospital stay. Blood and urine samples were taken at regular intervals for analysis of nicotine, cotinine, and metabolites by gas chromatography-mass spectrometry or liquid chromatography-mass spectrometry and subsequent characterization of pharmacokinetic phenotypes. DNA was genotyped to confirm zygosity and for variation in the primary gene involved in nicotine metabolism, CYP2A6. Univariate and multivariate biometric analyses planned for the future will determine genetic and environmental influences on each pharmacokinetic measure individually and in combination with each other, and in the presence and absence of covariates, including measured genotype. When the analyses are completed, this study will result in a more complete characterization of the impact of genetic and environmental influences on nicotine and cotinine metabolic pathways than has heretofore been reported. The approach taken, with its use of a quantitative model of nicotine metabolism, highly refined metabolic phenotypes, measured genotype, and advanced tools for biometric genetic analysis, provides a model for the use of twins in next-generation studies of complex drug-metabolism phenotypes
Accelerated metabolism of nicotine and cotinine in pregnant smokers. J Pharmacol Exp Ther 2002; 301: 594–598
ABSTRACT Cigarette smoking is the foremost modifiable risk factor for adverse pregnancy outcomes. Nicotine is a suspected fetal neuroteratogen. There is concern that nicotine may achieve toxic levels during pregnancy if nicotine replacement therapies are prescribed at doses used in the nonpregnant state. Ten healthy, volunteer, pregnant smokers received infusions of deuterium-labeled nicotine and cotinine during pregnancy and again postpartum. From blood and urine measurements, the following were determined: clearance (renal and nonrenal) of nicotine and cotinine, clearance of nicotine via the cotinine pathway (an indicator of CYP2A6 activity), and daily intake of nicotine from smoking. The clearance of nicotine and cotinine was significantly higher (60 and 140%, respectively), and the half-life of cotinine was much shorter (8.8 versus 16.6 h, P Ͻ 0.01) during pregnancy. Although plasma levels of cotinine were lower during pregnancy (119 versus 202 ng/ml, P Ͻ 0.05), daily intake of nicotine from smoking was similar during pregnancy and postpartum. For a given level of intake, the pharmacologic and toxicologic effects of nicotine during pregnancy are anticipated to be less than expected from nicotine metabolism data in nonpregnant women. Our data indicate that no downward dose adjustment needs to be made for nicotine replacement therapy during pregnancy. Conversely, higher than usual doses of nicotine may be necessary to optimize efficacy. Lower cotinine levels observed during pregnancy do not necessarily reflect less smoke exposure, and cut-off levels used to classify nonsmokers, passive smokers, and active smokers need to be established for pregnancy
Recommended from our members
Electronic cigarette chemicals transfer from a vape shop to a nearby business in a multiple-tenant retail building.
BackgroundElectronic cigarettes (ECs) are nicotine delivery devices that produce aerosol without combustion of tobacco; therefore, they do not produce sidestream smoke. Nevertheless, many users exhale large clouds of aerosol that can result in passive exposure of non-users. Analogous to thirdhand cigarette smoke, the exhaled aerosol also settles on indoor surfaces where it can produce a residue. We refer to this residue as EC exhaled aerosol residue (ECEAR). Our objective was to determine if exhaled EC aerosol transferred from a vape shop in a multiple-tenant retail building, where it was produced, to a nearby business (field site) where it could deposit as ECEAR.MethodsWe examined the build-up of ECEAR in commonly used materials (cotton towel and paper towels) placed inside the field site across from the vape shop. Materials were subjected to short-term (days) and long-term (months) exposures. Nicotine, other alkaloids and tobacco-specific nitrosamines (TSNAs) were identified and quantified in controls and field site samples using analytical chemical techniques.ResultsNicotine and other alkaloids were detected after 1 day of exposure in the field site, and these chemicals generally increased as exposure times increased. TSNAs, which have been linked to carcinogenesis, were also detected in short-term and long-term exposed samples from the field site.ConclusionsIn a multiple-tenant retail building, chemicals in EC aerosol travelled from a vape shop into an adjacent business where they deposited forming ECEAR. Regulatory agencies and tenants occupying such buildings should be aware of this potential environmental hazard
Recommended from our members
Respiratory Exposure to Thirdhand Cigarette Smoke Increases Concentrations of Urinary Metabolites of Nicotine
Introduction. The aims of this study were to characterize particle size in a thirdhand smoke aerosol and measure the effects of controlled inhalational exposure to thirdhand smoke on biomarkers of tobacco smoke exposure, inflammation and oxidative stress in human subjects Secondhand cigarette smoke changes physically and chemically after release into the environment. Some of the resulting chemicals persist indoors as thirdhand cigarette smoke. Thirdhand smoke that is sorbed to surfaces can emit particles back into the air.Methods. Smoke particle size was measured with a scanning mobility particle sizer/condensation particle counter. Using a crossover study design, 18 healthy nonsmokers received a three-hour inhalational exposure to thirdhand smoke and to filtered, conditioned air. Thirdhand smoke was generated with a smoking machine and aged overnight in a chamber. The chamber was flushed with clean air to create the THS aerosol. The tobacco smoke metabolites cotinine, 3-hydroxycotinine and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) were measured in urine. Vascular endothelial growth factor and interleukin-6 in plasma, and 8-isoprostane in urine, were measured using enzyme-linked immunosorbent assay kits. Results. Mean smoke particle size increased with aging (171 nm to 265 nm). We found significant increases in urinary cotinine and 3-hydroxycotinine after three hours of exposure to thirdhand smoke and no significant increases in NNAL, interleukin-6, vascular endothelial growth factor or 8-isoprostane.Conclusions. Acute inhalational exposure to 22-hour old tobacco smoke aerosol caused increases in the metabolites of nicotine but not the metabolites of the tobacco-specific nitrosamine NNK (4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone). This corroborates the utility of cotinine and NNAL for secondhand and thirdhand smoke exposure screening