6,840 research outputs found

    Kernel methods for in silico chemogenomics

    Full text link
    Predicting interactions between small molecules and proteins is a crucial ingredient of the drug discovery process. In particular, accurate predictive models are increasingly used to preselect potential lead compounds from large molecule databases, or to screen for side-effects. While classical in silico approaches focus on predicting interactions with a given specific target, new chemogenomics approaches adopt cross-target views. Building on recent developments in the use of kernel methods in bio- and chemoinformatics, we present a systematic framework to screen the chemical space of small molecules for interaction with the biological space of proteins. We show that this framework allows information sharing across the targets, resulting in a dramatic improvement of ligand prediction accuracy for three important classes of drug targets: enzymes, GPCR and ion channels

    Epitope prediction improved by multitask support vector machines

    Full text link
    Motivation: In silico methods for the prediction of antigenic peptides binding to MHC class I molecules play an increasingly important role in the identification of T-cell epitopes. Statistical and machine learning methods, in particular, are widely used to score candidate epitopes based on their similarity with known epitopes and non epitopes. The genes coding for the MHC molecules, however, are highly polymorphic, and statistical methods have difficulties to build models for alleles with few known epitopes. In this case, recent works have demonstrated the utility of leveraging information across alleles to improve the performance of the prediction. Results: We design a support vector machine algorithm that is able to learn epitope models for all alleles simultaneously, by sharing information across similar alleles. The sharing of information across alleles is controlled by a user-defined measure of similarity between alleles. We show that this similarity can be defined in terms of supertypes, or more directly by comparing key residues known to play a role in the peptide-MHC binding. We illustrate the potential of this approach on various benchmark experiments where it outperforms other state-of-the-art methods

    Active skeleton for bacteria modeling

    Full text link
    The investigation of spatio-temporal dynamics of bacterial cells and their molecular components requires automated image analysis tools to track cell shape properties and molecular component locations inside the cells. In the study of bacteria aging, the molecular components of interest are protein aggregates accumulated near bacteria boundaries. This particular location makes very ambiguous the correspondence between aggregates and cells, since computing accurately bacteria boundaries in phase-contrast time-lapse imaging is a challenging task. This paper proposes an active skeleton formulation for bacteria modeling which provides several advantages: an easy computation of shape properties (perimeter, length, thickness, orientation), an improved boundary accuracy in noisy images, and a natural bacteria-centered coordinate system that permits the intrinsic location of molecular components inside the cell. Starting from an initial skeleton estimate, the medial axis of the bacterium is obtained by minimizing an energy function which incorporates bacteria shape constraints. Experimental results on biological images and comparative evaluation of the performances validate the proposed approach for modeling cigar-shaped bacteria like Escherichia coli. The Image-J plugin of the proposed method can be found online at http://fluobactracker.inrialpes.fr.Comment: Published in Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualizationto appear i

    Clustered Multi-Task Learning: A Convex Formulation

    Get PDF
    In multi-task learning several related tasks are considered simultaneously, with the hope that by an appropriate sharing of information across tasks, each task may benefit from the others. In the context of learning linear functions for supervised classification or regression, this can be achieved by including a priori information about the weight vectors associated with the tasks, and how they are expected to be related to each other. In this paper, we assume that tasks are clustered into groups, which are unknown beforehand, and that tasks within a group have similar weight vectors. We design a new spectral norm that encodes this a priori assumption, without the prior knowledge of the partition of tasks into groups, resulting in a new convex optimization formulation for multi-task learning. We show in simulations on synthetic examples and on the IEDB MHC-I binding dataset, that our approach outperforms well-known convex methods for multi-task learning, as well as related non convex methods dedicated to the same problem

    Particle detection and tracking in fluorescence time-lapse imaging: a contrario approach

    Full text link
    This paper proposes a probabilistic approach for the detection and the tracking of particles in fluorescent time-lapse imaging. In the presence of a very noised and poor-quality data, particles and trajectories can be characterized by an a contrario model, that estimates the probability of observing the structures of interest in random data. This approach, first introduced in the modeling of human visual perception and then successfully applied in many image processing tasks, leads to algorithms that neither require a previous learning stage, nor a tedious parameter tuning and are very robust to noise. Comparative evaluations against a well-established baseline show that the proposed approach outperforms the state of the art.Comment: Published in Journal of Machine Vision and Application

    Increasing stability and interpretability of gene expression signatures

    Full text link
    Motivation : Molecular signatures for diagnosis or prognosis estimated from large-scale gene expression data often lack robustness and stability, rendering their biological interpretation challenging. Increasing the signature's interpretability and stability across perturbations of a given dataset and, if possible, across datasets, is urgently needed to ease the discovery of important biological processes and, eventually, new drug targets. Results : We propose a new method to construct signatures with increased stability and easier interpretability. The method uses a gene network as side interpretation and enforces a large connectivity among the genes in the signature, leading to signatures typically made of genes clustered in a few subnetworks. It combines the recently proposed graph Lasso procedure with a stability selection procedure. We evaluate its relevance for the estimation of a prognostic signature in breast cancer, and highlight in particular the increase in interpretability and stability of the signature

    La antiglobalizacion contra el desarrollo, la comunidad contra la sociedad Anti-globalization against development, community against society

    Get PDF
    Alimentados a menudo por la ecología profunda, la antiglobalización encuentra actualmente muchos méritos en las comunidades tradicionales más respetuosas de la "Mother earth". Esta corriente también rehabilita posiciones conservadoras hasta reunirse en ciertos casos con pensamientos claramente reaccionarios.Often fed by deep ecology, currently the anti-globalization presents many merits in traditional communities respectful of the "Mother earth". This current also rehabilitates conservative positions to meet in certain cases clearly reactionary thoughts
    • …
    corecore