Motivation : Molecular signatures for diagnosis or prognosis estimated from
large-scale gene expression data often lack robustness and stability, rendering
their biological interpretation challenging. Increasing the signature's
interpretability and stability across perturbations of a given dataset and, if
possible, across datasets, is urgently needed to ease the discovery of
important biological processes and, eventually, new drug targets. Results : We
propose a new method to construct signatures with increased stability and
easier interpretability. The method uses a gene network as side interpretation
and enforces a large connectivity among the genes in the signature, leading to
signatures typically made of genes clustered in a few subnetworks. It combines
the recently proposed graph Lasso procedure with a stability selection
procedure. We evaluate its relevance for the estimation of a prognostic
signature in breast cancer, and highlight in particular the increase in
interpretability and stability of the signature