1,968 research outputs found

    Measuring atomic NOON-states and using them to make precision measurements

    Full text link
    A scheme for creating NOON-states of the quasi-momentum of ultra-cold atoms has recently been proposed [New J. Phys. 8, 180 (2006)]. This was achieved by trapping the atoms in an optical lattice in a ring configuration and rotating the potential at a rate equal to half a quantum of angular momentum . In this paper we present a scheme for confirming that a NOON-state has indeed been created. This is achieved by spectroscopically mapping out the anti-crossing between the ground and first excited levels by modulating the rate at which the potential is rotated. Finally we show how the NOON-state can be used to make precision measurements of rotation.Comment: 14 preprint pages, 7 figure

    Predicting Adverse Outcomes in End Stage Renal Disease: Machine Learning Applied to the United States Renal Data System

    Get PDF
    We examined machine learning methods to predict death within six months using data derived from the United States Renal Data System (USRDS). We specifically evaluated a generalized linear model, a support vector machine, a decision tree and a random forest evaluated within the context of K-10 fold validation using the CARET package available within the open source architecture R program. We compared these models with the feed forward neural network strategy that we previously reported on with this data set

    Space-charge-limited current density for nonplanar diodes with monoenergetic emission using Lie-point symmetries

    Full text link
    Understanding space-charge limited current density (SCLCD) is fundamentally and practically important for characterizing many high-power and high-current vacuum devices. Despite this, no analytic equations for SCLCD with nonzero monoenergetic initial velocity have been derived for nonplanar diodes from first principles. Obtaining analytic equations for SCLCD for nonplanar geometries is often complicated by the nonlinearity of the problem and over constrained boundary conditions. In this letter, we use the canonical coordinates obtained by identifying Lie-point symmetries to linearize the governing differential equations to derive SCLCD for any orthogonal diode. Using this method, we derive exact analytic equations for SCLCD with a monoenergetic injection velocity for one-dimensional cylindrical, spherical, tip-to-tip (t-t), and tip-to-plate (t-p) diodes. We specifically demonstrate that the correction factor from zero initial velocity to monoenergetic emission depends only on the initial kinetic and electric potential energies and not on the diode geometry and that SCLCD is universal when plotted as a function of the canonical gap size. We also show that SCLCD for a t-p diode is a factor of four larger than a t-t diode independent of injection velocity. The results reduce to previously derived results for zero initial velocity using variational calculus and conformal mapping.Comment: 18 pages, 3 figure

    Predicting Adverse Outcomes in End Stage Renal Disease: Machine Learning Applied to the United States Renal Data System

    Get PDF
    We examined machine learning methods to predict death within six months using data derived from the United States Renal Data System (USRDS). We specifically evaluated a generalized linear model, a support vector machine, a decision tree and a random forest evaluated within the context of K-10 fold validation using the CARET package available within the open source architecture R program. We compared these models with the feed forward neural network strategy that we previously reported on with this data set

    Liver Resection for Primary Hepatic Neoplasms.

    Get PDF
    Subtotal hepatic resection was performed in 356 patients; 87 had primary hepatic malignancies, 108 had metastatic tumors, and 161 had benign lesions including 8 traumatic injuries. The global mortality was 4.2%. The experience has elucidated the role of subtotal hepatic resection both for benign and malignant neoplasms

    Research data supporting the publication "Under Pressure: Offering Fundamental Insight into Structural Changes on Ball Milling Battery Materials"

    Get PDF
    Data depository includes the following: Powder X-ray diffraction (PXRD) of the ball-milled Li2MoO4 (at 40Hz and 50Hz, with varying ball size of 7 and 10 mm). PXRD of H-Nb2O5 ball-milled at 40 Hz and 50 Hz (7 mm ball) Electrochemical data of Li2MoO4 and Li2MnO3 (ball-milled samples). TEM of Li2MoO4 and the ball-milled equivalent. Li and Mo NMR of Li2MoO4 and the ball-milled equivalent

    Dental artifacts in the head and neck region::implications for Dixon-based attenuation correction in PET/MR

    Get PDF
    BACKGROUND: In the absence of CT or traditional transmission sources in combined clinical positron emission tomography/magnetic resonance (PET/MR) systems, MR images are used for MR-based attenuation correction (MR-AC). The susceptibility effects due to metal implants challenge MR-AC in the neck region of patients with dental implants. The purpose of this study was to assess the frequency and magnitude of subsequent PET image distortions following MR-AC. METHODS: A total of 148 PET/MR patients with clear visual signal voids on the attenuation map in the dental region were included in this study. Patients were injected with [(18)F]-FDG, [(11)C]-PiB, [(18)F]-FET, or [(64)Cu]-DOTATATE. The PET/MR data were acquired over a single-bed position of 25.8 cm covering the head and neck. MR-AC was based on either standard MR-AC(DIXON) or MR-AC(INPAINTED) where the susceptibility-induced signal voids were substituted with soft tissue information. Our inpainting algorithm delineates the outer contour of signal voids breaching the anatomical volume using the non-attenuation-corrected PET image and classifies the inner air regions based on an aligned template of likely dental artifact areas. The reconstructed PET images were evaluated visually and quantitatively using regions of interests in reference regions. The volume of the artifacts and the computed relative differences in mean and max standardized uptake value (SUV) between the two PET images are reported. RESULTS: The MR-based volume of the susceptibility-induced signal voids on the MR-AC attenuation maps was between 1.6 and 520.8 mL. The corresponding/resulting bias of the reconstructed tracer distribution was localized mainly in the area of the signal void. The mean and maximum SUVs averaged across all patients increased after inpainting by 52% (± 11%) and 28% (± 11%), respectively, in the corrected region. SUV underestimation decreased with the distance to the signal void and correlated with the volume of the susceptibility artifact on the MR-AC attenuation map. CONCLUSIONS: Metallic dental work may cause severe MR signal voids. The resulting PET/MR artifacts may exceed the actual volume of the dental fillings. The subsequent bias in PET is severe in regions in and near the signal voids and may affect the conspicuity of lesions in the mandibular region. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s40658-015-0112-5) contains supplementary material, which is available to authorized users

    Inhaled Epoprostenol Compared with Nitric Oxide for Right Ventricular Support After Major Cardiac Surgery

    Get PDF
    Background: Right ventricular failure (RVF) is a leading driver of morbidity and death after major cardiac surgery for advanced heart failure, including orthotopic heart transplantation and left ventricular assist device implantation. Inhaled pulmonary-selective vasodilators, such as inhaled epoprostenol (iEPO) and nitric oxide (iNO), are essential therapeutics for the prevention and medical management of postoperative RVF. However, there is limited evidence from clinical trials to guide agent selection despite the significant cost considerations of iNO therapy. Methods: In this double-blind trial, participants were stratified by assigned surgery and key preoperative prognostic features, then randomized to continuously receive either iEPO or iNO beginning at the time of separation from cardiopulmonary bypass with the continuation of treatment into the intensive care unit stay. The primary outcome was the composite RVF rate after both operations, defined after transplantation by the initiation of mechanical circulatory support for isolated RVF, and defined after left ventricular assist device implantation by moderate or severe right heart failure according to criteria from the Interagency Registry for Mechanically Assisted Circulatory Support. An equivalence margin of 15 percentage points was prespecified for between-group RVF risk difference. Secondary postoperative outcomes were assessed for treatment differences and included: mechanical ventilation duration; hospital and intensive care unit length of stay during the index hospitalization; acute kidney injury development including renal replacement therapy initiation; and death at 30 days, 90 days, and 1 year after surgery. Results: Of 231 randomized participants who met eligibility at the time of surgery, 120 received iEPO, and 111 received iNO. Primary outcome occurred in 30 participants (25.0%) in the iEPO group and 25 participants (22.5%) in the iNO group, for a risk difference of 2.5 percentage points (two one-sided test 90% CI, –6.6% to 11.6%) in support of equivalence. There were no significant between-group differences for any of the measured postoperative secondary outcomes. Conclusions: Among patients undergoing major cardiac surgery for advanced heart failure, inhaled pulmonary-selective vasodilator treatment using iEPO was associated with similar risks for RVF development and development of other postoperative secondary outcomes compared with treatment using iNO. Registration: URL: https://www.clinicaltrials.gov; Unique identifier: NCT03081052

    Transcranial Magnetic Stimulation for Post-traumatic Stress Disorder

    Get PDF
    Post-traumatic stress disorder (PTSD) is a psychiatric disorder that causes significant functional impairment and is related to altered stress response and reinforced learned fear behavior. PTSD has been found to impact three functional networks in the brain: default mode, executive control, and salience. The executive control network includes the dorsolateral prefrontal cortex (DLPFC) and lateral PPC. The salience network involves the anterior cingulate cortex, anterior insula, and amygdala. This latter network has been found to have increased functional connectivity in PTSD. Transcranial Magnetic Stimulation (TMS) is a technique used in treating PTSD and involves stimulating specific portions of the brain through electromagnetic induction. Currently, high-frequency TMS applied to the left dorsolateral prefrontal cortex (DLPFC) is approved for use in treating major depressive disorder (MDD) in patients who have failed at least one medication trial. In current studies, high-frequency stimulation has been shown to be more effective in PTSD rating scales posttreatment than low-frequency stimulation. The most common side effect is headache and scalp pain treated by mild analgesics. Seizures are a rare side effect and are usually due to predisposing factors. Studies have been done to assess the overall efficacy of TMS. However, results have been conflicting, and sample sizes were small. More research should be done with larger sample sizes to test the efficacy of TMS in the treatment of PTSD. Overall, TMS is a relatively safe treatment. Currently, the only FDA- approved to treat refractory depression, but with the potential to treat many other conditions
    • …
    corecore