80 research outputs found

    Determinants of natural HIV-1 control

    Get PDF
    HIV-1 infection usually progresses to AIDS within 10 years in antiretroviral therapy untreated individuals, but there is a group of infected individuals, known as controllers, who maintain low plasma HIV-1 RNA levels and normal CD4+ T-cell counts for many years. Evidence suggests that the mechanisms of viral control in these individuals are heterogeneous. In this review, we highlight the viral and host factors, particularly host immunological and immunogenetic factors that are associated with controller status. Despite the broad heterogeneity within controllers, there is compelling evidence that cytotoxic CD8+ T lymphocyte responses act as the main driver of control in the majority of these individuals, especially in those with protective HLA-I alleles. Further investigation of controllers without protective HLA-I alleles is required as it seems that this subset exhibits more durable control of HIV-1 disease progression. Understanding the immune defense mechanisms in controllers provides hope for harnessing these responses in the general population, either for protective or therapeutic vaccines or to achieve a functional cure in infected individuals

    Genetic determinants of Nef-mediated CD4 and HLA class I down-regulation differences between HIV-1 subtypes B and C

    Get PDF
    BACKGROUND: HIV-1 subtype C Nef sequences have a significantly lower ability overall to down-regulate CD4 and HLA-I than subtype B Nef sequences. Here we investigated whether Nef amino acids differing in frequency between HIV-1 subtypes B and C explain lower CD4 and HLA-I down-regulation ability of subtype C. FINDINGS: Subtype-specific mutations were introduced into representative subtype B and C Nef sequences and the CD4 and HLA-I down-regulation ability of these mutants was measured by flow cytometry in a CD4+ T cell line. Subtype C consensus 20I and subtype B consensus 20M reduced and increased HLA-I down-regulation respectively, and the S88G immune escape mutation (which is significantly more frequent in subtype C than subtype B) reduced CD4 and HLA-I down-regulation. CONCLUSIONS: Our data suggest that these subtype-specific differences may partly contribute to inter-subtype functional differences, and identification of an immune escape mutation – S88G – that impairs Nef function is of relevance to vaccine design

    Modelling and in vitro testing of the HIV-1 Nef fitness landscape.

    Get PDF
    An effective vaccine is urgently required to curb the HIV-1 epidemic. We have previously described an approach to model the fitness landscape of several HIV-1 proteins, and have validated the results against experimental and clinical data. The fitness landscape may be used to identify mutation patterns harmful to virus viability, and consequently inform the design of immunogens that can target such regions for immunological control. Here we apply such an analysis and complementary experiments to HIV-1 Nef, a multifunctional protein which plays a key role in HIV-1 pathogenesis. We measured Nef-driven replication capacities as well as Nef-mediated CD4 and HLA-I down-modulation capacities of thirty-two different Nef mutants, and tested model predictions against these results. Furthermore, we evaluated the models using 448 patient-derived Nef sequences for which several Nef activities were previously measured. Model predictions correlated significantly with Nef-driven replication and CD4 down-modulation capacities, but not HLA-I down-modulation capacities, of the various Nef mutants. Similarly, in our analysis of patient-derived Nef sequences, CD4 down-modulation capacity correlated the most significantly with model predictions, suggesting that of the tested Nef functions, this is the most important in vivo. Overall, our results highlight how the fitness landscape inferred from patient-derived sequences captures, at least in part, the in vivo functional effects of mutations to Nef. However, the correlation between predictions of the fitness landscape and measured parameters of Nef function is not as accurate as the correlation observed in past studies for other proteins. This may be because of the additional complexity associated with inferring the cost of mutations on the diverse functions of Nef

    Differing natural killer cell, T cell and antibody profiles in antiretroviral-naive HIV-1 viraemic controllers with and without protective HLA alleles

    Get PDF
    Previous work suggests that HIV controllers with protective human leukocyte antigen class I alleles (VC+) possess a high breadth of Gag-specific CD8+ T cell responses, while controllers without protective alleles (VC-) have a different unknown mechanism of control. We aimed to gain further insight into potential mechanisms of control in VC+ and VC-. We studied 15 VC+, 12 VC- and 4 healthy uninfected individuals (UI). CD8+ T cell responses were measured by ELISpot. Flow cytometry was performed to analyse surface markers for activation, maturation, and exhaustion on natural killer (NK) cell and T cells, as well as cytokine secretion from stimulated NK cells. We measured plasma neutralization activity against a panel of 18 Env-pseudotyped viruses using the TZM-bl neutralization assay. We found no significant differences in the magnitude and breadth of CD8+ T cell responses between VC+ and VC-. However, NK cells from VC- had higher levels of activation markers (HLA-DR and CD38) (p = 0.03), and lower cytokine expression (MIP-1β and TNF-α) (p = 0.05 and p = 0.04, respectively) than NK cells from VC+. T cells from VC- had higher levels of activation (CD38 and HLA-DR co-expression) (p = 0.05), as well as a trend towards higher expression of the terminal differentiation marker CD57 (p = 0.09) when compared to VC+. There was no difference in overall neutralization breadth between VC+ and VC- groups, although there was a trend for higher neutralization potency in the VC- group (p = 0.09). Altogether, these results suggest that VC- have a more activated NK cell profile with lower cytokine expression, and a more terminally differentiated and activated T cell profile than VC+. VC- also showed a trend of more potent neutralizing antibody responses that may enhance viral clearance. Further studies are required to understand how these NK, T cell and antibody profiles may contribute to differing mechanisms of control in VC+ and VC-

    The Fitness Landscape of HIV-1 Gag: Advanced Modeling Approaches and Validation of Model Predictions by In Vitro Testing

    Get PDF
    Viral immune evasion by sequence variation is a major hindrance to HIV-1 vaccine design. To address this challenge, our group has developed a computational model, rooted in physics, that aims to predict the fitness landscape of HIV-1 proteins in order to design vaccine immunogens that lead to impaired viral fitness, thus blocking viable escape routes. Here, we advance the computational models to address previous limitations, and directly test model predictions against in vitro fitness measurements of HIV-1 strains containing multiple Gag mutations. We incorporated regularization into the model fitting procedure to address finite sampling. Further, we developed a model that accounts for the specific identity of mutant amino acids (Potts model), generalizing our previous approach (Ising model) that is unable to distinguish between different mutant amino acids. Gag mutation combinations (17 pairs, 1 triple and 25 single mutations within these) predicted to be either harmful to HIV-1 viability or fitness-neutral were introduced into HIV-1 NL4-3 by site-directed mutagenesis and replication capacities of these mutants were assayed in vitro. The predicted and measured fitness of the corresponding mutants for the original Ising model (r = −0.74, p = 3.6×10−6) are strongly correlated, and this was further strengthened in the regularized Ising model (r = −0.83, p = 3.7×10−12). Performance of the Potts model (r = −0.73, p = 9.7×10−9) was similar to that of the Ising model, indicating that the binary approximation is sufficient for capturing fitness effects of common mutants at sites of low amino acid diversity. However, we show that the Potts model is expected to improve predictive power for more variable proteins. Overall, our results support the ability of the computational models to robustly predict the relative fitness of mutant viral strains, and indicate the potential value of this approach for understanding viral immune evasion, and harnessing this knowledge for immunogen design

    Generation and characterization of infectious molecular clones of transmitted/founder HIV-1 subtype C viruses

    Get PDF
    The genetic diversity of HIV impedes vaccine development. Identifying the viral properties of transmitted/founder (T/F) variants may provide a common vaccine target. To study the biological nature of T/F viruses, we constructed full-length clones from women detected during Fiebig stage I acute HIV-1 infection (AHI) from heterosexual male-to-female (MTF) transmission; and clones after one year of infection using In-Fusion-based cloning. Eighteen full-length T/F clones were generated from 9 women and six chronic infection clones were from 2 individuals. All clones but one were non-recombinant subtype C. Three of the 5 T/F clones and 3 chronic clones tested replicated efficiently in PBMCs and utilised CCR5 coreceptor for cell entry. Transmitted/founder and chronic infection clones displayed heterogenous in vitro replicative capacity and resistance to type I interferon. T/F viruses had shorter Env glycoproteins and fewer N-linked glycosylation sites in Env. Our findings suggest MTF transmission may select viruses with compact envelopes

    No evidence for selection of HIV-1 with enhanced Gag-Protease or Nef function among breakthrough infections in the CAPRISA 004 tenofovir microbicide trial

    Get PDF
    BACKGROUND: Use of antiretroviral-based microbicides for HIV-1 prophylaxis could introduce a transmission barrier that inadvertently facilitates the selection of fitter viral variants among incident infections. To investigate this, we assessed the in vitro function of gag-protease and nef sequences from participants who acquired HIV-1 during the CAPRISA 004 1% tenofovir microbicide gel trial. Methods and RESULTS: We isolated the earliest available gag-protease and nef gene sequences from 83 individuals and examined their in vitro function using recombinant viral replication capacity assays and surface protein downregulation assays, respectively. No major phylogenetic clustering and no significant differences in gag-protease or nef function were observed in participants who received tenofovir gel versus placebo gel prophylaxis. CONCLUSION: Results indicate that the partial protective effects of 1% tenofovir gel use in the CAPRISA 004 trial were not offset by selection of transmitted/early HIV-1 variants with enhanced Gag-Protease or Nef fitness

    HIV-1 subtype C Nef-mediated SERINC5 down-regulation significantly contributes to overall Nef activity

    Get PDF
    BACKGROUND: Nef performs multiple cellular activities that enhance HIV-1 pathogenesis. The role of Nef-mediated down-regulation of the host restriction factor SERINC5 in HIV-1 pathogenesis is not well-defined. We aimed to investigate if SERINC5 down-regulation activity contributes to HIV-1 subtype C disease progression, to assess the relative contribution of this activity to overall Nef function, and to identify amino acids required for optimal activity. We measured the SERINC5 down-regulation activity of 106 subtype C Nef clones, isolated from individuals in early infection, for which the Nef activities of CD4 and HLA-I down-regulation as well as alteration of TCR signalling were previously measured. The relationship between SERINC5 down-regulation and markers of disease progression, and the relative contribution of SERINC5 down-regulation to a Nef fitness model-derived E value (a proxy for overall Nef fitness in vivo), were assessed. RESULTS: No overall relationship was found between SERINC5 down-regulation and viral load set point (p = 0.28) or rate of CD4+ T cell decline (p = 0.45). CD4 down-regulation (p = 0.02) and SERINC5 down-regulation (p = 0.003) were significant determinants of E values in univariate analyses, with the greatest relative contribution for SERINC5 down-regulation, and only SERINC5 down-regulation remained significant in the multivariate analysis (p = 0.003). Using a codon-by-codon analysis, several amino acids were significantly associated with increased (10I, 11V, 38D, 51T, 65D, 101V, 188H and, 191H) or decreased (10K, 38E, 65E, 135F, 173T, 176T and, 191R) SERINC5 down-regulation activity. Site-directed mutagenesis experiments of selected mutants confirmed a substantial reduction in SERINC5 down-regulation activity associated with the mutation 173T, while mutations 10K, 135F, and 176T were associated with more modest reductions in activity that were not statistically significant. CONCLUSIONS: These results suggest that SERINC5 down-regulation is a significant contributor to overall Nef function and identify potential genetic determinants of this Nef function that may have relevance for vaccines or therapeutics

    Subtle Longitudinal Alterations in Env Sequence Potentiate Differences in Sensitivity to Broadly Neutralizing Antibodies following Acute HIV-1 Subtype C Infection

    Get PDF
    Broadly neutralizing antibodies (bNAbs) for HIV-1 prevention or cure strategies must inhibit transmitted/founder and reservoir viruses. Establishing sensitivity of circulating viruses to bNAbs and genetic patterns affecting neutralization variability may guide rational bNAbs selection for clinical development. We analyzed 326 single env genomes from nine individuals followed longitudinally following acute HIV-1 infection, with samples collected at ~1 week after the first detection of plasma viremia; 300 to 1,709 days postinfection but prior to initiating antiretroviral therapy (ART) (median = 724 days); and ~1 year post ART initiation. Sequences were assessed for phylogenetic relatedness, potential N- and O-linked glycosylation, and variable loop lengths (V1 to V5). A total of 43 env amplicons (median = 3 per patient per time point) were cloned into an expression vector and the TZM-bl assay was used to assess the neutralization profiles of 15 bNAbs targeting the CD4 binding site, V1/V2 region, V3 supersite, MPER, gp120/gp41 interface, and fusion peptide. At 1 μg/mL, the neutralization breadths were as follows: VRC07-LS and N6.LS (100%), VRC01 (86%), PGT151 (81%), 10-1074 and PGT121 (80%), and less than 70% for 10E8, 3BNC117, CAP256.VRC26, 4E10, PGDM1400, and N123-VRC34.01. Features associated with low sensitivity to V1/V2 and V3 bNAbs were higher potential glycosylation sites and/or relatively longer V1 and V4 domains, including known "signature" mutations. The study shows significant variability in the breadth and potency of bNAbs against circulating HIV-1 subtype C envelopes. VRC07-LS, N6.LS, VRC01, PGT151, 10-1074, and PGT121 display broad activity against subtype C variants, and major determinants of sensitivity to most bNAbs were within the V1/V4 domains. IMPORTANCE Broadly neutralizing antibodies (bNAbs) have potential clinical utility in HIV-1 prevention and cure strategies. However, bNAbs target diverse epitopes on the HIV-1 envelope and the virus may evolve to evade immune responses. It is therefore important to identify antibodies with broad activity in high prevalence settings, as well as the genetic patterns that may lead to neutralization escape. We investigated 15 bNAbs with diverse biophysical properties that target six epitopes of the HIV-1 Env glycoprotein for their ability to inhibit viruses that initiated infection, viruses circulating in plasma at chronic infection before antiretroviral treatment (ART), or viruses that were archived in the reservoir during ART in subtype C infected individuals in South Africa, a high burden country. We identify the antibodies most likely to be effective for clinical use in this setting and describe mutational patterns associated with neutralization escape from these antibodies
    • …
    corecore