25 research outputs found

    Consistency Checks for Two-Body Finite-Volume Matrix Elements. II. Perturbative Systems

    Get PDF
    Using the general formalism presented in [Phys. Rev. D 94, 013008 (2016); Phys. Rev. D 100, 034511 (2019)], we study the finite-volume effects for the 2 þ J → 2 matrix element of an external current coupled to a two-particle state of identical scalars with perturbative interactions. Working in a finite cubic volume with periodicity L, we derive a 1=L expansion of the matrix element through O(1=L5) and find that it is governed by two universal current-dependent parameters, the scalar charge and the threshold two particle form factor. We confirm the result through a numerical study of the general formalism and additionally through an independent perturbative calculation. We further demonstrate a consistency with the Feynman-Hellmann theorem, which can be used to relate the 1=L expansions of the ground-state energy and matrix element. The latter gives a simple insight into why the leading volume corrections to the matrix element have the same scaling as those in the energy, 1=L3, in contradiction to Phys. Rev. D 91, 074509 (2015), which found a 1=L2 contribution to the matrix element. We show here that such a term arises at intermediate stages in the perturbative calculation, but cancels in the final result

    Solving Relativistic Three-Body Integral Equations in the Presence of Bound States and Resonances

    Get PDF
    Three-body interactions play an important role throughout modern-day particle, nuclear, and hadronic physics; many experimentally observed reactions of interest for testing the Standard Model result in final states composed of three particles or more. Due to these issues, a full description of three-body interactions from Quantum Chromodynamics is required. The focus of this project was to extend previous results for a two-body subsystem with a bound state to include resonance channels. We first derived a novel single-variable observable, denoted as an intensity distribution, which is proportional to the probability density of the three-body scattering amplitude. We explored this distribution in the context of established results for a two-body subsystem with a bound state. We then developed a model two-body scattering amplitude with both a resonant and a bound state and examined the three-body scattering intensity distribution for this system. For each of these two-body scattering subsystem models, intensity distributions were computed, resulting in novel graphs of relevant scattering behavior.https://digitalcommons.odu.edu/reu2021_physics/1000/thumbnail.jp

    Consistency Checks for Two-Body Finite-Volume Matrix Elements: Conserved Currents and Bound States

    Get PDF
    Recently, a framework has been developed to study form factors of two-hadron states probed by an external current. The method is based on relating finite-volume matrix elements, computed using numerical lattice QCD, to the corresponding infinite-volume observables. As the formalism is complicated, it is important to provide nontrivial checks on the final results and also to explore limiting cases in which more straightforward predictions may be extracted. In this work we provide examples on both fronts. First, we show that, in the case of a conserved vector current, the formalism ensures that the finite-volume matrix element of the conserved charge is volume independent and equal to the total charge of the two-particle state. Second, we study the implications for a two-particle bound state. We demonstrate that the infmite-volume limit reproduces the expected matrix element and derive the leading finite-volume corrections to this result for a scalar current. finally, we provide numerical estimates for the expected size of volume effects in future lattice QCD calculations of the deuteron\u27s scalar charge. We find that these effects completely dominate the infinite-volume result for realistic lattice volumes and that applying the present formalism, to analytically remove an infinite series of leading volume corrections, is crucial to reliably extract the infinite-volume charge of the state

    On the Equivalence of Three-Particle Scattering Formalisms

    Get PDF
    In recent years, different on-shell 33\mathbf{3}\to\mathbf{3} scattering formalisms have been proposed to be applied to both lattice QCD and infinite volume scattering processes. We prove that the formulation in the infinite volume presented by Hansen and Sharpe in Phys.~Rev.~D92, 114509 (2015) and subsequently Brice\~no, Hansen, and Sharpe in Phys.~Rev.~D95, 074510 (2017) can be recovered from the BB-matrix representation, derived on the basis of SS-matrix unitarity, presented by Mai {\em et al.} in Eur.~Phys.~J.~A53, 177 (2017) and Jackura {\em et al.} in Eur.~Phys.~J.~C79, 56 (2019). Therefore, both formalisms in the infinite volume are equivalent and the physical content is identical. Additionally, the Faddeev equations are recovered in the non-relativistic limit of both representations.Comment: 13 pages, 5 figure

    On-Shell Representations of Two-Body Transition Amplitudes: Single External Current

    Get PDF
    This work explores scattering amplitudes that couple two-particle systems via a single external current insertion, 2 + J → 2. Such amplitudes can provide structural information about the excited QCD spectrum. We derive an exact analytic representation for these reactions. From these amplitudes, we show how to rigorously define resonance and bound-state form factors. Furthermore, we explore the consequences of the narrow-width limit of the amplitudes as well as the role of the Ward-Takahashi identity for conserved vector currents. These results hold for any number of two-body channels with no intrinsic spin, and a current with arbitrary Lorentz structure and quantum numbers. This work and the existing finite-volume formalism provide a complete framework for determining this class of amplitudes from lattice QCD

    Evolution of Efimov States

    Full text link
    The Efimov phenomenon manifests itself as an emergent discrete scaling symmetry in the quantum three-body problem. In the unitarity limit, it leads to an infinite tower of three-body bound states with energies forming a geometric sequence. In this work, we study the evolution of these so-called Efimov states using relativistic scattering theory. We identify them as poles of the three-particle SS matrix and trace their trajectories in the complex energy plane as they evolve from virtual states through bound states to resonances. We dial the scattering parameters toward the unitarity limit and observe the emergence of the universal scaling of energies and couplings -- a behavior known from the non-relativistic case. Interestingly, we find that Efimov resonances follow unusual, cyclic trajectories accumulating at the three-body threshold and then disappear at some values of the two-body scattering length. We propose a partial resolution to this "missing states" problem.Comment: 15 pages, 10 figures

    Two-Current Transition Amplitudes with Two-Body Final States

    Get PDF
    We derive the on-shell form of amplitudes containing two external currents with a single hadron in the initial state and two hadrons in the final state, denoted as 1 + J → 2 + J . This class of amplitude is relevant in precision tests of the Standard Model as well as for exploring the structure of excited states in the QCD spectrum. We present a model-independent description of the amplitudes where we sum to all orders in the strong interaction. From this analytic form we are able to extract transition and elastic resonance form factors consistent with previous work as well as a novel Compton-like amplitude coupling a single particle state to a resonance. The results also hold for reactions where the one-particle state is replaced with the vacuum, namely J → 2 + J amplitudes.We also investigate constraints placed upon the formalism for the case of a conserved vector current in the form of the Ward-Takahashi identity. The formalism presented here is valid for currents of arbitrary Lorentz structure and quantum numbers with spinless hadrons where any number of two-particle intermediate channels may be open. When combined with the appropriate finite-volume framework, this work facilitates the extraction of physical observables from this class of amplitudes via lattice QCD calculations

    Solving Relativistic Three-Body Integral Equations in the Presence of Bound States

    Get PDF
    We present a simple scheme for solving relativistic integral equations for the partial-wave projected three-body amplitudes. Our techniques are used to solve a problem of three scalar particles with a formation of a S-wave two-body bound state. We rewrite the problem in a form suitable for numerical solution and then explore three solving strategies. In particular, we discuss different ways of incorporating the bound-state pole contribution in the integral equations. All of them lead to agreement with previous results obtained using finite-volume spectra of the same theory, providing further evidence of the validity of the existing finite- and infinite-volume formalism for studying three-particle systems. We discuss an analytic and numerical estimate of the systematic errors and provide numerical evidence that the methods presented allow for determination of amplitude above the three-body threshold as well. In conjunction with the previously derived finite-volume formalism, this work furthers the objective for extracting three-hadron scattering amplitudes directly from lattice QCD

    Solving relativistic three-body integral equations in the presence of bound states

    Get PDF
    We present a systematically improvable method for numerically solving relativistic three-body integral equations for the partial-wave projected amplitudes. The method consists of a discretization procedure in momentum space, which approximates the continuum problem with a matrix equation. It is solved for different matrix sizes, and in the end, an extrapolation is employed to restore the continuum limit. Our technique is tested by solving a three-body problem of scalar particles with an SS wave two-body bound state. We discuss two methods of incorporating the pole contribution in the integral equations, both of them leading to agreement with previous results obtained using finite-volume spectra of the same theory. We provide an analytic and numerical estimate of the systematic errors. Although we focus on kinematics below the three-particle threshold, we provide numerical evidence that the methods presented allow for determination of amplitude above this threshold as well.Comment: 20 pages, 9 figure

    On-shell representations of two-body transition amplitudes: single external current

    Get PDF
    This work explores scattering amplitudes that couple two-particle systems via a single external current insertion, 2+J22+\mathcal{J}\to 2. Such amplitudes can provide structural information about the excited QCD spectrum. We derive an exact analytic representation for these reactions. From these amplitudes, we show how to rigorously define resonance and bound-state form-factors. Furthermore, we explore the consequences of the narrow-width limit of the amplitudes as well as the role of the Ward-Takahashi identity for conserved vector currents. These results hold for any number of two-body channels with no intrinsic spin, and a current with arbitrary Lorentz structure and quantum numbers. This work and the existing finite-volume formalism provide a complete framework for determining this class of amplitudes from lattice QCD.Comment: 35 pages, 13 figure
    corecore