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Three-body interactions play an important role throughout modern-day particle, nuclear, and
hadronic physics; many experimentally observed reactions of interest for testing the Standard Model
result in final states composed of three particles or more. Due to these issues, a full description
of three-body interactions from Quantum Chromodynamics is required. The focus of this project
was to extend previous results for a two-body subsystem with a bound state to include resonance
channels. We first derived a novel single-variable observable, denoted as an intensity distribution,
which is proportional to the probability density of the three-body scattering amplitude. We explored
this distribution in the context of established results for a two-body subsystem with a bound state.
We then implemented a purely resonant two-body Breit-Wigner scattering amplitude and examined
the consequences for the three-body intensity distribution. Finally, we developed a model two-body
scattering amplitude with both a resonant and a bound state and examined the three-body scattering
intensity distribution for this system. For each of these two-body scattering subsystem models,
intensity distributions were computed, resulting in novel graphs of relevant scattering behavior.

I. INTRODUCTION

In this work, recent attempts to obtain three-hadron dynamics from quantum chromodynamics (QCD) using lattice
QCD are expanded. In particular, this work approaches determining relativistic three-particle scattering amplitudes
for three identical scalar particles using the relativistic field theory (RFT) approach, which sums on-shell projected
generalized Feynman diagrams to all orders.

Recent work presented a framework for solving these integral equations for weakly interacting systems (i.e. for
weak short-distance three-body interactions and weak coupling between particles in the two-body sub-channels) [1] as
well as systems in the presence of two-body bound states (i.e. a three-nucleon system where the deuteron, a shallow
bound state between two nucleons, can be formed) [2].

Here we examine two additional cases: a system exhibiting resonant behavior in the two-body sector and a system
with a combination of a shallow two-body bound state in addition to the resonant behavior. Solutions to the integral
equations are obtain by introducing a discretized mesh in momentum space in order to numerically approximate the
integral equations as a system of N linear equations.

In the second case, the presence of the two-body bound state results in a pole singularity inside of the integration
range, which can cause numerical instabilities. We adopt a standard regularization technique by introducing a finite
+iε to move the pole off of the real axis, thereby avoiding this pole in the integration region. Solutions to the matrix
are then extrapolated to the continuum limit through the parameter N .

II. INTEGRAL EQUATIONS

The unsymmetrized three-body scattering amplitude (as presented in Ref. [3]) can be written as:

M(u,u)
3 (p,k) = D(u,u)(p,k) +M(u,u)

df,3 (p,k) (1)

Where the first term, D, represents the sum over all possible pair-wise interactions between the bodies mediated
by one-particle exchanges. Here, k and p are the momenta of one of the hadrons in the initial and final states,
respectively. We refer to this hadron as the spectator, and the other two particles are called a pair. The superscript,
(u, u), indicates the scattering amplitude is unsymmetrized; the fully symmetrized amplitude is obtained by summing
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FIG. 1: Diagrammatic representation of the D(u,u) amplitude defined in Eqn. (3). Black circles represent the on-shell two-
particle scattering amplitude M2

over all nine possible combinations of spectator momenta. In addition to the momenta of the particles, the amplitude
additionally depends on the square of the center-of-mass energy, represented by the Mandelstam variable: s = E2,

which is suppressed in the argument list of Eqn. (1). The second term,M(u,u)
df,3 represents short-distance three-particle

interactions, which we hereafter assume the scattering amplitude is dominated by two-body subprocesses and take
the limit as this term approaches zero. Given this assumption, the three-body amplitude is reduced to the ladder
portion as,

lim
Mdf,3→0

M(u,u)
3 (p,k) = D(u,u)(p,k) (2)

The expression for the ladder equation which sums over all pair-wise interactions is defined by the integral equation,

D(u,u)(p,k) = −M2(p)G(p,k)M2(k)−M2(p)

ˆ
d3k′

(2π)32ωk′
G(p,k′)D(u,u)(k′,k) (3)

Where M2 is the two-body scattering amplitude describing interactions between particles in the pair. The energy
of the interacting pair is fixed by the momentum of the spectator, σk ≡ (E − ωk)2 − k2, where ωk ≡

√
m2 + k2 and

k ≡ |k|. This ladder amplitude is dependent also on the exchange propagator, G, which describes the long-range
interactions between the interacting pair and the spectator and is defined by,

G(p,k) ≡ H(p, k)

b2pk −m2 + iε
(4)

Where b2pk ≡ (E − ωp − ωk)2 − (p + k)2 and H(p, k) is a cutoff function defined in Ref. [4] as,

H(p, k) ≡ J(σp/4m
2)J(σk/4m

2) (5)

J(x) ≡


0, x ≤ 0

exp
(
− 1
x exp

[
− 1

1−x

])
, 0 < x ≤ 1

1, x > 1

(6)

In order to reduce the strength of pole singularities arising from two-particle scattering amplitudes with bound
states, we define an amputated amplitude, d, defined by,

D(u,u)(p,k) ≡M2(p)d(u,u)(p,k)M2(k) (7)

Inserting Eqn. (7) into Eqn. (3), we obtain,

d(u,u)(p,k) = −G(p,k)−
ˆ

d3k′

(2π)32ωk′
G(p,k′)M2(k′)d(u,u)(k′,k) (8)

This equation for d is computationally intensive due to the three-dimensional integral over momenta. Using partial
wave projection over the total angular momentum, J , and limiting ourselves to the J = 0 (or S-wave) component we
can integrate over the solid angle to remove the angular dependence of our integral as,
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d
(u,u)
S (p, k) = −GS(p, k)−

ˆ ∞
0

dk′ k′2

(2π)2ωk′
GS(p, k′)M(k′)d

(u,u)
S (k′, k) (9)

Where the angular integral for GS gives,

GS(p, k) ≡
ˆ
dΩp
4π

dΩk
4π

G(p,k)

= −H(p, k)

4pk
log

(
α(p, k)− 2pk + iε

α(p, k) + 2pk + iε

)
(10)

Where α(p, k) = (E − ωk − ωp)2 − p2 − k2 − m2. In order to conduct a single-variable study of the three-body
scattering amplitude both below and above the three-body energetic threshold at s = (3m)2, we derive an observable,
denoted as an intensity distribution, which is proportional to the probability density of the three-body scattering
amplitude. The details of this derivation are left to Appendix C, but the form of the observable is given by,

I(s) =
∣∣∣ρϕb(s)Mϕb(s)

∣∣∣2 + 2

ˆ (
√
s−m)2

4m2

dσk
π
ρ(σk)τ(s, σk)ρϕb(s)

∣∣∣Mϕb→3ϕ(σk, s)
∣∣∣2

+

ˆ (
√
s−m)2

4m2

dσk
π

ˆ (
√
s−m)2

4m2

dσp
π
ρ(σp)ρ(σk)τ(σp, s)τ(σk, s)

∣∣∣M3(σp, s, σk)
∣∣∣2 (11)

Where τ(σb, s) = ρϕb(s),Mϕb(s) = g2dS(σb, σb), andMϕb→3ϕ(σk, s) = gM2(σk)dS(σb, σk). This expression can be
given more compactly as I(s) = Iϕb(s)+2Iϕb→3ϕ(s)+ I3ϕ(s). For anyM2 containing no bound states, the observable
reduces to I(s) = I3ϕ(s).

III. TWO-BODY SCATTERING AMPLITUDES

We consider three separate toy-models of potential 2-body scattering amplitudes: a narrow bound state, a resonance
channel, and a combined bound state with resonance. We examine each case in turn.

A. Bound State

Previous work (see Ref. [2]) introduced a toy model for a two-body scattering amplitude containing a single bound
state given as,

2.5 3.0 3.5 4.0 4.5
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ma = 16

FIG. 2: Plot of M2,BS with as a function of s/m2 for scattering lengths a = {2, 6, 16}. The vertical dashed lines indicate the
locations of the bound state poles, and the red circle indicates the threshold.
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M2,BS(k) =M2,BS(σk)

=
16π
√
σk

−1/a− iq∗2k(σk)
(12)

Where q∗2k(σk) =
√
σk/4−m2 is the relative momentum between the two particles in their center of mass (CM)

frame and the scattering length is a. We can see from Figure 3 this amplitude has a pole on the real σk axis, which
we label as σb, at,

σb = 4(m2 − 1/a2) (13)

Near the bound state pole, the two-body scattering amplitude has the form,

lim
σk→σb

M2,BS(σk) =
−g2

σk − σb
(14)

Where g is the residue at the pole. Equating Eqn. (12) to Eqn. (14), we can solve analytically for g:

g = 8

√
2π
√
σb

a
(15)

More details on this calculation are found in Appendix A.

B. Resonance Channel

A well-known toy model for a two-body scattering amplitude with a resonance is given by the relativistic Breit-
Wigner parameterization,

M2,RS(σk) =
16π
√
σk

q∗2k(σk) cot δ − iq∗2k(σk)
(16)

Where,

tan δ(s) =

√
σkΓ(s)

m2
0 − σk

Γ(s) =
g2

6π

m2
0

σk
q∗2k(σk)

For this work, we choose the parameter m0 = 2.5 and allowed values for g = {2, 3, 4}, which affects the width of the
resonance channel. Due to the lack of a bound state in this two-particle subsystem, there is no fixed on-shell value for
the spectator’s momentum. Therefore we choose the spectator’s momentum such that it lies in the physical region
(above threshold), fix the particle’s energy, and scan in the two-particle subsystem’s total momentum.

0 2 4 6 8 10 12
s/m2

0

50

100

150

200

|
2,

RS
|

g = 2
g = 3
g = 4

FIG. 3: Plot of M2,RS (A Breit-Wigner scattering amplitude with a resonance channel) as a function of s/m2 for g = {2, 3, 4}.
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(g1/m)2 = 75
(g1/m)2 = 100
(g1/m)2 = 125

FIG. 4: Plot of M2,BS+RS , a toy-model two-particle scattering amplitude with both a shallow bound state and a resonance
channel, as a function of s/m2 for (g1/m)2 = {75, 100, 125}. The dashed lines indicate the locations of the bound state poles.

C. Combination of Bound State and Resonance Channel

We now consider a generalized form for the two-particle scattering amplitude which exhibits both a bound state
and resonance behavior,

M2,RS+BS(σk) =
K2(σk)

1− iρ(σk)K2(σk)
(17)

Where the 2-body K-matrix has the form,

K2(σk) =
g2

1

m2
1 − σk

+
g2

2

m2
2 − σk

(18)

And we choose the parameters such thatm1 = 1.5m, m2 = 2.5m, g2
2 = 30m2, and allow g2

1 = {75m2, 100m2, 125m2}.
This results in an amplitude exhibiting the behavior shown in Figure 4. We can then numerically solve for the location
of the bound state by choosing σb such that

(
1 − iρ(σb)K2(σb) = 0

)
, which results in the poles as seen in Figure 4.

Near the bound state, the pole on the real axis again takes the form,

lim
σk→σb

M2,RS+BS(σk) =
−g2

σk − σb
(19)

Where g is the residue at the pole. Solving analytically for g, we find,

g2 = −16π
√
σb

σb
√

4m2 − σb
g2

1(m2
2 − σb) + g2

2(m2
1 − σb)

{
g2

1(m2
2 − σb)

(
σb(4m

2 − σb)
2(m2

1 − σb)
−m2

)
+g2

2(m2
1 − σb)

(
σb(4m

2 − σb)
2(m2

2 − σb)
−m2

)}−1

(20)

Where the numerical details are found in Appendix B. Of particular note for this two-body amplitude, the modifi-
cation of the value for (g1/m)2 has the primary effect of moving the depth of the bound state and slightly widening
the pole singularity.

IV. DETAILS OF NUMERICAL METHODS

In order to solve the integral equation presented in Eqn. (9), it is necessary to discretize in terms of the spectator
momenta, which we denote with an indexed form as k′ → k′n and generate a uniform mesh of values. The minimum
value for the spectator’s momentum is kmin = 0. The maximum value for the momentum is governed by the cutoff
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function, H(p, k). The value goes to zero when σk = 0, which then implies k2
max = (s−m2)2/4s. The distance between

mesh points is given by the transformation of the differential momentum in the integrand as: dk′ → ∆k′ = k′max(s)/N .
We then discretize Eqn. (9) in momenta by,

d
(u,u)
S (p, k; ε,N) = −GS(p, k; ε)−

N−1∑
n=0

∆k′ k′2n
(2π)2ωk′n

GS(p, k′n; ε)M2(k′n; ε)d
(u,u)
S (k′n, k; ε,N) (21)

Where the ε-dependence of M2 is implemented as M(σk; ε) ≡ M(σk + iε). We can then solve this equation for d
by writing it as a matrix in the space defined by {k′n} with matrix elements given by,

d
(u,u)
S;nn′ = d

(u,u)
S (kn, kn′ ; ε,N) (22)

Moving the summation term to the other side,

−GS(p, k; ε) =

N−1∑
n=0

[
d

(u,u)
S;nn′(kn′ , kn; ε,N)δkn′ ,kn +

∆k′ k2
n′

(2π)2ωkn′

GS(kn′ , kn; ε)M2(kn′ ; ε)d
(u,u)
S;nn′(kn′ , kn; ε,N)

]
(23)

Where δkn′ ,kn is the Kronecker delta. We can then define a simple linear system to solve for d at arbitrary (p, k)
as,

d
(u,u)
S (p, k; ε,N) = −[B−1GS ]nn′

∣∣∣
kn=p; kn′=k

(24)

Where B is a matrix whose elements are defined by,

Bnn′ = δkn′ ,kn +
∆k′ k2

n′

(2π)2ωkn′

GS(kn′ , kn; ε)M2(kn′ ; ε) (25)

For calculation of the intensity observable contribution from 3ϕ→ 3ϕ, I3ϕ(s), d is averaged over all physical (k,p)
combinations. In the presence of a bound state, the spectator has an on-shell momentum which corresponds to the
bound state pole, which we label as q. We can obtain this value by fixing the energy of the two-particle subsystem
at the bound state pole, the sum of the energies of the two-body subsystem and the spectator particle satisfy the

relation
√
s =

√
σb + q2 +

√
m2 + q2. Solving for q gives:

q =
1

2
√
s
λ1/2

(
s, σb,m

2
)

(26)

Where λ(x, y, z) = x2 +y2 +z2−2(xy+xz+yz) is the Källén triangle function. For the Iϕb(s) term, we interpolate
through the matrix to obtain this on-shell value. For the Iϕb→3ϕ(s) term, we choose (k = q) and interpolate the
matrix into a vector form over p ∈ {kn′}, which is summed over to find Iϕb→3ϕ(s). Finally, we directly adopt the
error measurement from Ref. [2] such that η ≡ 2πNεq/kmax, where εq is given by,

εq = ε

(
s+m2 − sb

4qs

)
(27)

For the two-body scattering amplitude without bound state pole, we may drop the ε-dependence for the two-body
scattering amplitude, as there is no pole in the integration region for M2,RS . We do, however, still require a well-
defined ε due to the definition for GS given in Eqn. (10). In the resonance only case, we define q by fixing the energy
of the two-particle subsystem to the two-particle threshold (σk fixed = (2m)2 → qRS = λ1/2(s, σk fixed,m

2)/2
√
s).
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V. RESULTS

For each of the two-body scattering amplitudes of interest, we calculate the intensity distribution over an appropriate
energetic range.

A. Bound State

8 10 12 14 16 18 20
s/m2

0.0

0.5
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1.5

2.0

2.5

3.0

3.5

4.0

I(s
)

Components of Intensity Observable, ma = 2
I(s)
I3 (s)
I b(s)
I b 3 (s)

10 12 14 16 18 20
s/m2
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8

I(s
)

Components of Intensity Observable, ma = 16
I(s)
I3 (s)
I b(s)
I b 3 (s)

(a) (b)

FIG. 5: Plots of I(s) with two-particle scattering amplitude M2,BS as a function of s/m2 for scattering lengths (a) ma = 2
and (b) ma = 16. Each case is broken out by individual component contributions to the total intensity distribution. The red
circles indicate the location of the three-body energetic threshold.

In the presence of a two-body bound state, we computed intensity distributions for each of the scattering lengths
of interest. The full results are presented in Appendix D, however we present two particular cases in Figure 5 and
plot over the energy range σb < s < 20m2 with the overall intensity distribution broken out by component.

As expected, we see only a Iϕb contribution below the three-particle energetic threshold at s = (3m)2. Below
this threshold, there is insufficient energy in the system for three particles to exist independently, therefore the only
physical process allowable requires two of the particles to form a bound state.

For the deeply bound state (ma = 2), above threshold, the Iϕb contribution is non-negligible and monotonically
decreasing. We then also see smoothly increasing contributions from the three-particle component, I3ϕ, and the
exchange component, Iϕb→3ϕ. In contrast, the shallow bound state (ma = 16) has a much smaller binding energy,
and thus less phase space available for the bound state to exist above the three-particle threshold. Therefore, the
contributions from the three-particle and exchange components of the intensity distribution dominate above this
threshold.

B. Resonance Channel

10 12 14 16 18 20
s/m2

0.0

0.5

1.0

1.5

2.0

2.5

I(s
)

Intensity Observable
g = 2
g = 3
g = 4

FIG. 6: Plots of I(s) with two-particle scattering amplitude M2,RS as a function of s/m2 for select choices of g.

In the case of the resonance channel alone, the intensity distribution is relatively unremarkable, as shown in Figure 6.
There is no bound state in the two-body sector, therefore there is only a single contributor to the intensity, I3ϕ. We
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see a resonance peak in the vicinity of 13 < s/m2 < 15. Increasing the width of the two-body resonance channel by
increasing the value of g has a corresponding effect of increasing the intensity distribution, as expected.

C. Combined Bound State and Resonance Channel
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(g1/m)2 = 100
(g1/m)2 = 125
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I b 3 (s)
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FIG. 7: Plots of I(s) with two-particle scattering amplitude M2,RS+BS as a function of s/m2 for (a) varying (g1/m)2 and (b)
broken out by individual component contributions to the total intensity distribution. The red circles indicate the location of
the three-body energetic threshold.

In the case of the combined bound state and resonance channel in the two-body sector, the intensity distribution
for selected values of (g1/m)2 = {75, 100, 125} is shown in the left panel of Figure 7. In the right panel of this figure,
the individual component contributions to the total are shown for the particular case of (g1/m)2 = 100.

As discussed when the two-body amplitude was introduced in Section III, the modification of the parameter (g1/m)2

has the primary effect of moving the location and width of the pole singularity corresponding to the bound state in
the two-body sector. In the left panel of Figure 7, increasing the shallow-ness of the bound state creates a larger peak
on the left side of the graph and slightly increases the total intensity of the distribution. Additionally, as (g1/m)2

increases in this range, we see a more pronounced ”bump” in the distribution in the range 12 < s/m2 < 13.
In the right panel of Figure 7, the individual contributors to the overall intensity distribution are shown. Going

from left to right, there is a peak in the region below the three-body threshold which is driven by the Iϕb component,
since this is the only physical process occurring in this region. There is a ”bump” in the distribution in the range
12 < s/m2 < 13 (as previously mentioned) which is driven by underlying exchange processes in the Iϕb→3ϕ component.
Finally, there is a pronounced peak near s/m2 = 14 which is driven by the resonance channel in the two-body sector,
as similarly seen in the resonance only case.

VI. CONCLUSIONS

In this work, a method for solving relativistic three-body integral equations is adapted from Ref. [2] which allows
for numerical solutions for the three-particle scattering amplitude in an exchange-dominated scattering process. We
derive a suitable single-variable observable, I(s), which averages over the physical momenta for underlying two-body
scattering amplitudes with or without a bound state and is proportional to the three-particle scattering amplitude
probability density. This observable is examined in the context of three toy-model two-body scattering amplitudes:
bound state only, resonance channel only, and a combination of the two. In the combined case, we see a bump in the
overall intensity distribution which is not due to a bound state or resonance channel, but rather, an exchange process
int he two-body sector where a bound state is formed or broken during the scattering event.
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Appendix A: Calculation of Pole Residue in Bound State Case

Recall the model for the bound state only two-body scattering amplitude given by,

M2,BS(k) =
16π
√
σk

−1/a− iq∗2k(σk)
(A1)

Near the bound state pole, the two-body scattering amplitude has the form,

lim
σk→σb

M2,BS(σk) =
−g2

σk − σb
(A2)

Where g is the residue at the pole. Equating Eqn. (A1) to Eqn. (A2), we can solve analytically for g:

− g2 = lim
σk→σb

(σk − σb)
16π
√
σk

−1/a− iq∗2k(σk)
= lim
σk→σb

(σk − σb)
−16πa

√
σk

1 + iaq∗2k(σk)
(A3)

Expanding the denominator as a Taylor series at σk = σb,

1 + iaq∗2k(σk) =
��

���
���:

0(
1 + iaq∗2k(σb)

)
+ (σk − σb)

∂

∂σk

(
1 + iaq∗2k(σb)

)∣∣∣
σk=σb

+ (σk − σb)
∂2

∂σ2
k

(
1 + iaq∗2k(σb)

)∣∣∣
σk=σb

+ · · · (A4)

Inserting into Eqn. (A3) and cancelling a factor of (σk − σb), we obtain,

−g2 =
−16πa

√
σb

ia ∂
∂σk

(
q∗2k(σk)

)∣∣∣
σk=σb

(A5)

Since ∂q∗2k/∂σk = 1/4
√
σk − 4m2, we can write the residue as,

g = 8

√
π
√
σb(σb − 4m2)

i

= 8

√
π
√
σb(−4/a2)

i

= 8

√
2π
√
σb

a
(A6)
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Appendix B: Calculation of Pole Residue in Combined Bound State and Resonance Channel Case

Near the bound state, the pole on the real axis again takes the form,

lim
σk→σb

M2,RS+BS(σk) =
−g2

σk − σb
(B1)

Where g is the residue at the pole. Solving analytically for g, we find,

−g2 = lim
σk→σb

(σk − σb)
K2(σk)

1− iρ(σk)K2(σk)
(B2)

We can then expand the denominator as a Taylor series at σk = σb as,

1− iρ(σk)K2(σk) =
��

���
���

�:0(
1− iρ(σb)K2(σb)

)
+ (σk − σb)

∂

∂σk

(
1− iρ(σk)K2(σk)

)∣∣∣
σk=σb

+ (σk − σb)
∂2

∂σ2
k

(
1− iρ(σk)K2(σk)

)∣∣∣
σk=σb

+ · · · (B3)

Inserting into Eqn. (B2) and cancelling a factor of (σk − σ), we obtain,

−g2 =
K2(σb)

−i ∂
∂σk

(
ρ(σk)K2(σk)

)∣∣∣
σk=σb

(B4)

Taking,

ρ(σk) =
i
√

4m2 − σk
32π
√
σk

K2(σk) =
g2

1

m2
1 − σk

+
g2

2

m2
2 − σk

=
i
√

4m2/σk − 1

32π
=
g2

1(m2
2 − σk) + g2

2(m2
1 − σk)

(m2
1 − σk)(m2

2 − σk)

Then the first order partial derivatives with respect to σk become,

∂

∂σk
ρ(σk) =

−im2

16πσ
3/2
k

√
4m2 − σk

∂

∂σk
K2(σk) =

g2
1(m2

2 − σk)2 + g2
2(m2

1 − σk)2

(m2
1 − σk)2(m2

2 − σk)2

Therefore the product rule gives,

∂

∂σk

(
ρ(σk)K2(σk)

)
=

i

16π
√
σk(m2

1 − σk)(m2
2 − σk)

{
1

2

√
4m2 − σk

(
g2

1(m2
2 − σk)2 + g2

2(m2
1 − σk)2

(m2
1 − σk)(m2

2 − σk)

)
− m2

σk
√

4m2 − σk

(
g2

1(m2
2 − σk) + g2

2(m2
1 − σk)

)}
(B5)

Therefore, after minor algebraic rearrangements, the full analytic expression for the residue at the pole becomes,

g2 = −16π
√
σb

σb
√

4m2 − σb
g2

1(m2
2 − σb) + g2

2(m2
1 − σb)

{
g2

1(m2
2 − σb)

(
σb(4m

2 − σb)
2(m2

1 − σb)
−m2

)
+g2

2(m2
1 − σb)

(
σb(4m

2 − σb)
2(m2

2 − σb)
−m2

)}−1

(B6)
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Appendix C: Derivation of Intensity Observable

For the three-body case, the probability density for scattering is proportional to,

Probability ∝
ˆ (
√
s−m)2

0

dσp
π

ˆ (
√
s−m)2

0

dσk
π
ρ(σp)τ(σp, s)ρ(σk)τ(σk, s)

∣∣∣M3(σp, σk)
∣∣∣2 (C1)

Where,

ρ(σk) =
q∗k

16π
√
σk

τ(s, σk) =
k

8π
√
s

Since, in this regime, M3(σp, σk) =M2(σp)dS(σp, σk)M2(σk), we can denote Eqn. (C1) as I(s) and expand as,

I(s) =

ˆ (
√
s−m)2

0

dσp
π

ˆ (
√
s−m)2

0

dσk
π
ρ(σp)τ(σp, s)ρ(σk)τ(σk, s)

∣∣∣M2(σp)M2(σk)dS(σp, σk)
∣∣∣2 (C2)

From the two-body unitarity condition, we have ImM2(σk) = ρ(σk)
∣∣M2(σk)

∣∣2. For the two-body amplitudes
containing a bound-state pole (e.g. M2,BS and M2,RS+BS), we can expand the imaginary part of the two-body
scattering amplitude over the region of interest as,

ImM2(σk) = g2πδ(σ − σb) + ρ(σk)
∣∣∣M2(σk)

∣∣∣2Θ(σ − 4m2) (C3)

Where the first term is the contribution from the pole in terms of the residue, and the second term contains a
Heaviside function to include contributions from the physical region where σk > 4m2. Inserting this expansion into
Eqn. (C2),

I(s) = τ2(σb, s)g
4
∣∣∣dS(σb, σb)

∣∣∣2
+ 2

ˆ (
√
s−m)2

4m2

dσk
π
τ(σk, s)τ(σb, s)g

2ρ(σk)
∣∣∣dS(σb, σk)M2(σk)

∣∣∣2 (C4)

+

ˆ (
√
s−m)2

4m2

dσk
π

ˆ (
√
s−m)2

4m2

dσp
π
ρ(σp)τ(σp, s)ρ(σk)τ(σk, s)

∣∣∣M2(σp)M2(σk)dS(σp, σk)
∣∣∣2

Recognizing τ(σb, s) = ρϕb(s), Mϕb(s) = g2dS(σb, σb), and Mϕb→3ϕ(σk, s) = gM2(σk)dS(σb, σk), we can express
Eqn. (C4) as,

I(s) =
∣∣∣ρϕb(s)Mϕb(s)

∣∣∣2 + 2

ˆ (
√
s−m)2

4m2

dσk
π
ρ(σk)τ(s, σk)ρϕb(s)

∣∣∣Mϕb→3ϕ(σk, s)
∣∣∣2

+

ˆ (
√
s−m)2

4m2

dσk
π

ˆ (
√
s−m)2

4m2

dσp
π
ρ(σp)ρ(σk)τ(σp, s)τ(σk, s)

∣∣∣M3(σp, s, σk)
∣∣∣2 (C5)
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Appendix D: Bound State Only Additional Figures
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FIG. 8: Plots of I(s) with varying underlying two-body bound state scattering lengths in the two energetic ranges of interest,
as a function of s/m2. Each case is broken out by individual component contributions to the total intensity distribution. The
red circles indicate the location of the three-body energetic threshold.

Above we have the full results for each of the scattering lengths of interest. The panels on the left are plotted over
the symmetric energy range about the three particle energetic threshold given by σb < s < 2(3m)2 − σb. The panels
on the right extend the upper energy range to a fixed value of s = 20m2. Going from top to bottom, we show results
for each scattering length ma = {2, 6, 16}.

With increasing scattering length, the binding energy of the bound state decreases, and therefore we see the
contributions from the Iϕb components weaken. In particular, we note the phase-space available for the bound state
in the case of ma = 16 is insignificant enough that the I3ϕ and Iϕb→3ϕ components dominate the intensity distribution
above the three-particle threshold.
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