50,122 research outputs found
The Propagation of Quarks in the Spatial Direction in Hot QCD
The dynamics of {\it light} fermions propagating in a spatial direction at
high temperatures can be described effectively by a two--dimensional
Schr\"odinger equation with {\it heavy} effective mass .
Starting from QED, we discuss the transition from three-- to two--dimensional
positronium discussing the latter in detail including relativistic effects. In
the case of QCD the problem is similar to that of heavy quarkonium. Our
effective potential contains the usual Coulomb and confining parts as well as a
perturbative spin--spin interaction. The resulting ``wave functions"
reproduce recent lattice data for the and channels. The physical
meaning of such `confinement' is related to the non--trivial magnetic
interaction of color currents in the quark--gluon plasma. Our results do not
contradict the idea that the normal electric interaction of color charges is
screened and produces no bound states in the usual sense.Comment: 23 page
The changes in chemical composition during development of the bovine nuchal ligament
Whole bovine nuchal ligaments, or portions thereof (in the case of commercially valuable animals), were obtained from 45 animals (28 fetal and 17 postnatal) ranging in age from 110 days of gestation to 10 yr. Insoluble elastin was quantitatively prepared from the fresh ligaments by extraction with hot alkali and by a combination of multiple extractions with alkaline buffer and then repeated autoclaving. When adult samples were examined, the yields of insoluble residue by these two methods were very similar, but with young fetal samples the second method gave significantly higher values, because of incomplete purification of the elastin residue. The changes in the concentration of collagen, alkali-insoluble elastin, and DNA have been examined. DNA concentration, and, thus, cell population density, fell progressively during the fetal period of development, to reach a steady value soon after birth. Collagen appeared in appreciable quantities before elastin, but its concentration was rapidly halved at about the time of birth. Insoluble elastin concentration was low until the end of the 7th fetal month, at which time it began to rise rapidly. The rate of increase in elastin concentration remained high throughout the next 10–12 wk, by which time the adult value had been reached. Quantitative studies, on the basis of the whole ligament, showed that the total cell content rises to a maximum at birth, but falls soon after to a level about half that at birth. Total collagen production and elastin deposition continue at a steady, maximal rate over the interval from 235 days of gestation to the end of the 1st postnatal month. It is concluded that the immediate postnatal period would be the most favorable phase in which to attempt the isolation of the soluble precursor elastin
Measuring gravitational lens time delays using low-resolution radio monitoring observations
Obtaining lensing time delay measurements requires long-term monitoring
campaigns with a high enough resolution (< 1 arcsec) to separate the multiple
images. In the radio, a limited number of high-resolution interferometer arrays
make these observations difficult to schedule. To overcome this problem, we
propose a technique for measuring gravitational time delays which relies on
monitoring the total flux density with low-resolution but high-sensitivity
radio telescopes to follow the variation of the brighter image. This is then
used to trigger high-resolution observations in optimal numbers which then
reveal the variation in the fainter image. We present simulations to assess the
efficiency of this method together with a pilot project observing radio lens
systems with the Westerbork Synthesis Radio Telescope (WSRT) to trigger Very
Large Array (VLA) observations. This new method is promising for measuring time
delays because it uses relatively small amounts of time on high-resolution
telescopes. This will be important because instruments that have high
sensitivity but limited resolution, together with an optimum usage of followup
high-resolution observations from appropriate radio telescopes may in the
future be useful for gravitational lensing time delay measurements by means of
this new method.Comment: 10 pages, 7 figures, accepted by MNRA
Imaging X-ray spectrometer
An X-ray spectrometer for providing imaging and energy resolution of an X-ray source is described. This spectrometer is comprised of a thick silicon wafer having an embedded matrix or grid of aluminum completely through the wafer fabricated, for example, by thermal migration. The aluminum matrix defines the walls of a rectangular array of silicon X-ray detector cells or pixels. A thermally diffused aluminum electrode is also formed centrally through each of the silicon cells with biasing means being connected to the aluminum cell walls and causes lateral charge carrier depletion between the cell walls so that incident X-ray energy causes a photoelectric reaction within the silicon producing collectible charge carriers in the form of electrons which are collected and used for imaging
Finding the Pion in the Chiral Random Matrix Vacuum
The existence of a Goldstone boson is demonstrated in chiral random matrix
theory. After determining the effective coupling and calculating the scalar and
pseudoscalar propagators, a random phase approximation summation reveals the
massless pion and massive sigma modes expected whenever chiral symmetry is
spontaneously broken.Comment: 3 pages, 1 figure, revte
First-principles thermoelasticity of bcc iron under pressure
We investigate the elastic and isotropic aggregate properties of
ferromagnetic bcc iron as a function of temperature and pressure by computing
the Helmholtz free energies for the volume-conserving strained structures using
the first-principles linear response linear-muffin-tin-orbital method and the
generalized-gradient approximation. We include the electronic excitation
contributions to the free energy from the band structures, and phonon
contributions from quasi-harmonic lattice dynamics. We make detailed
comparisons between our calculated elastic moduli and their temperature and
pressure dependences with available experimental and theoretical data.Comment: 5 figures, 2 table
Stability of the solutions of the Gross-Pitaevskii equation
We examine the static and dynamic stability of the solutions of the
Gross-Pitaevskii equation and demonstrate the intimate connection between them.
All salient features related to dynamic stability are reflected systematically
in static properties. We find, for example, the obvious result that static
stability always implies dynamic stability and present a simple explanation of
the fact that dynamic stability can exist even in the presence of static
instability.Comment: 7 pages, 1 figur
Optical alignment system Patent
Electro-optical/computer system for aligning large structural members and maintaining correct positio
Hall state quantization in a rotating frame
We derive electromagnetomotive force fields for charged particles moving in a
rotating Hall sample, satisfying a twofold U(1) gauge invariance principle. It
is then argued that the phase coherence property of quantization of the line
integral of total collective particle momentum into multiples of Planck's
quantum of action is solely responsible for quantization in the Hall state. As
a consequence, the height of the Hall quantization steps should remain
invariant in a rapidly rotating Hall probe. Quantum Hall particle
conductivities do not depend on charge and mass of the electron, and are
quantized in units of the inverse of Planck's action quantum.Comment: 6 pages, accepted for publication in Europhysics Letter
- …