1,424 research outputs found

    Low-lying excitations of a trapped rotating Bose-Einstein condensate

    Full text link
    We investigate the low-lying excitations of a weakly-interacting, harmonically-trapped Bose-Einstein condensed gas under rotation, in the limit where the angular mometum LL of the system is much less than the number of the atoms NN in the trap. We show that in the asymptotic limit NN \to \infty the excitation energy, measured from the energy of the lowest state, is given by 27N3(N31)v0/6827 N_{3}(N_{3}-1) v_0 /68, where N3N_{3} is the number of octupole excitations and v0v_{0} is the unit of the interaction energy.Comment: 3 pages, RevTex, 2 ps figures, submitted to PR

    Operator-Algebraic Approach to the Yrast Spectrum of Weakly Interacting Trapped Bosons

    Full text link
    We present an operator-algebraic approach to deriving the low-lying quasi-degenerate spectrum of weakly interacting trapped N bosons with total angular momentum \hbar L for the case of small L/N, demonstrating that the lowest-lying excitation spectrum is given by 27 g n_3(n_3-1)/34, where g is the strength of the repulsive contact interaction and n_3 the number of excited octupole quanta. Our method provides constraints for these quasi-degenerate many-body states and gives higher excitation energies that depend linearly on N.Comment: 7 pages, one figur

    Low-Lying Excitations from the Yrast Line of Weakly Interacting Trapped Bosons

    Full text link
    Through an extensive numerical study, we find that the low-lying, quasi-degenerate eigenenergies of weakly-interacting trapped N bosons with total angular momentum L are given in case of small L/N and sufficiently small L by E = L hbar omega + g[N(N-L/2-1)+1.59 n(n-1)/2], where omega is the frequency of the trapping potential and g is the strength of the repulsive contact interaction; the last term arises from the pairwise repulsive interaction among n octupole excitations and describes the lowest-lying excitation spectra from the Yrast line. In this case, the quadrupole modes do not interact with themselves and, together with the octupole modes, exhaust the low-lying spectra which are separated from others by N-linear energy gaps.Comment: 5 pages, RevTeX, 2 figures, revised version, submitted to PR

    A Comment on "The Far Future of Exoplanet Direct Characterization" - the Case for Interstellar Space Probes

    Full text link
    Following on from ideas presented in a recent paper by Schneider et al. (2010) on "The Far Future of Exoplanet Direct Characterization", I argue that they have exaggerated the technical obstacles to performing such 'direct characterization' by means of fast (order 0.1c) interstellar space probes. A brief summary of rapid interstellar spaceflight concepts that may be found in the literature is presented. I argue that the presence of interstellar dust grains, while certainly something which will need to be allowed for in interstellar vehicle design, is unlikely to be the kind of 'show stopper' suggested by Schneider et al. Astrobiology as a discipline would be a major beneficiary of developing an interstellar spaceflight capability, albeit in the longer term, and I argue that astrobiologists should keep an open mind to the possibilities.Comment: Accepted for publication in Astrobiolog

    Social Dimensions of Urban Flood Experience, Exposure, and Concern

    Get PDF
    With growing urban populations and climate change, urban flooding is an important global issue, even in dryland regions. Flood risk assessments are usually used to identify vulnerable locations and populations, flooding experience patterns, or levels of concern about flooding, but rarely are all of these approaches combined. Furthermore, the social dynamics of flood concerns, exposure, and experience are underexplored. We combined geographic and survey data on household‐level measures of flood experience, concern, and exposure in Utah\u27s urbanizing Wasatch Front. We asked: (1) Are socially vulnerable groups more likely to be exposed to flood risk? (2) How common are flooding experiences among urban residents, and how are these experiences related to sociodemographic characteristics and exposure? and (3) How concerned are urban residents about flooding, and does concern vary by exposure, flood experience, and sociodemographic characteristics? Although floodplain residents were more likely to be White and have higher incomes, respondents who were of a racial/ethnic minority, were older, had less education, and were living in floodplains were more likely to report flood experiences and concern about flooding. Flood risk management approaches need to address social as well as physical sources of vulnerability to floods and recognize social sources of variation in flood experiences and concern

    Nonlinear dynamics for vortex lattice formation in a rotating Bose-Einstein condensate

    Full text link
    We study the response of a trapped Bose-Einstein condensate to a sudden turn-on of a rotating drive by solving the two-dimensional Gross-Pitaevskii equation. A weakly anisotropic rotating potential excites a quadrupole shape oscillation and its time evolution is analyzed by the quasiparticle projection method. A simple recurrence oscillation of surface mode populations is broken in the quadrupole resonance region that depends on the trap anisotropy, causing stochastization of the dynamics. In the presence of the phenomenological dissipation, an initially irrotational condensate is found to undergo damped elliptic deformation followed by unstable surface ripple excitations, some of which develop into quantized vortices that eventually form a lattice. Recent experimental results on the vortex nucleation should be explained not only by the dynamical instability but also by the Landau instability; the latter is necessary for the vortices to penetrate into the condensate.Comment: RevTex4, This preprint includes no figures. You can download the complete article and figures at http://matter.sci.osaka-cu.ac.jp/bsr/cond-mat.htm

    CMAS challenges to CMC-T/EBC systems

    Get PDF
    Gas turbine technology is undergoing a major transition with the recent implementation of SiC based ceramic composites (CMCs) in aircraft engines. While the potential improvement in temperature capability (≥1500°C) is unprecedented, there are a number of issues that limit the full exploitation of such potential. In addition to the longstanding concern for low temperature oxidative embrittlement and the limited temperature capability of current bond coats and matrices, the susceptibility of the protective SiO2 to volatilization in the combustion environment requires the use of environmental barrier coatings (EBCs) to achieve durability targets. Most EBC concepts, however, are based on silicates and are thus susceptible to degradation by molten silicate deposits generically known as CMAS originating from mineral debris ingested into engines with the intake air. This presentation will discuss the thermodynamic and mechanistic foundation of the degradation of EBCs by CMAS, recent progress in establishing the relevant phase equilibria for these systems, and the role of the CMAS composition on the extent of degradation, as well as perspective on mitigation. (Research supported by ONR, AFOSR and the P&W Center of Excellence in Composites at UCSB.

    Measurement of the Total (p,Pi) Cross Sections Through Residual Activity

    Get PDF
    Supported by the National Science Foundation and Indiana Universit

    Solitons, solitonic vortices, and vortex rings in a confined Bose-Einstein condensate

    Full text link
    Quasi-one-dimensional solitons that may occur in an elongated Bose-Einstein condensate become unstable at high particle density. We study two basic modes of instability and the corresponding bifurcations to genuinely three-dimensional solitary waves such as axisymmetric vortex rings and non-axisymmetric solitonic vortices. We calculate the profiles of the above structures and examine their dependence on the velocity of propagation along a cylindrical trap. At sufficiently high velocity, both the vortex ring and the solitonic vortex transform into an axisymmetric soliton. We also calculate the energy-momentum dispersions and show that a Lieb-type mode appears in the excitation spectrum for all particle densities.Comment: RevTeX 9 pages, 9 figure

    Generating vortex rings in Bose-Einstein condensates in the line-source approximation

    Get PDF
    We present a numerical method for generating vortex rings in Bose-Einstein condensates confined in axially symmetric traps. The vortex ring is generated using the line-source approximation for the vorticity, i.e., the rotational of the superfluid velocity field is different from zero only on a circumference of given radius located on a plane perpendicular to the symmetry axis and coaxial with it. The particle density is obtained by solving a modified Gross-Pitaevskii equation that incorporates the effect of the velocity field. We discuss the appearance of density profiles, the vortex core structure and the vortex nucleation energy, i.e., the energy difference between vortical and ground-state configurations. This is used to present a qualitative description of the vortex dynamics.Comment: Accepted for publication in Phys. Rev.
    corecore