27 research outputs found

    Characteristics and Outcomes of US Children and Adolescents With Multisystem Inflammatory Syndrome in Children (MIS-C) Compared With Severe Acute COVID-19

    Get PDF
    Importance Refinement of criteria for multisystem inflammatory syndrome in children (MIS-C) may inform efforts to improve health outcomes. Objective To compare clinical characteristics and outcomes of children and adolescents with MIS-C vs those with severe coronavirus disease 2019 (COVID-19). Setting, Design, and Participants Case series of 1116 patients aged younger than 21 years hospitalized between March 15 and October 31, 2020, at 66 US hospitals in 31 states. Final date of follow-up was January 5, 2021. Patients with MIS-C had fever, inflammation, multisystem involvement, and positive severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) reverse transcriptase–polymerase chain reaction (RT-PCR) or antibody test results or recent exposure with no alternate diagnosis. Patients with COVID-19 had positive RT-PCR test results and severe organ system involvement. Exposure SARS-CoV-2. Main Outcomes and Measures Presenting symptoms, organ system complications, laboratory biomarkers, interventions, and clinical outcomes. Multivariable regression was used to compute adjusted risk ratios (aRRs) of factors associated with MIS-C vs COVID-19. Results Of 1116 patients (median age, 9.7 years; 45% female), 539 (48%) were diagnosed with MIS-C and 577 (52%) with COVID-19. Compared with patients with COVID-19, patients with MIS-C were more likely to be 6 to 12 years old (40.8% vs 19.4%; absolute risk difference [RD], 21.4% [95% CI, 16.1%-26.7%]; aRR, 1.51 [95% CI, 1.33-1.72] vs 0-5 years) and non-Hispanic Black (32.3% vs 21.5%; RD, 10.8% [95% CI, 5.6%-16.0%]; aRR, 1.43 [95% CI, 1.17-1.76] vs White). Compared with patients with COVID-19, patients with MIS-C were more likely to have cardiorespiratory involvement (56.0% vs 8.8%; RD, 47.2% [95% CI, 42.4%-52.0%]; aRR, 2.99 [95% CI, 2.55-3.50] vs respiratory involvement), cardiovascular without respiratory involvement (10.6% vs 2.9%; RD, 7.7% [95% CI, 4.7%-10.6%]; aRR, 2.49 [95% CI, 2.05-3.02] vs respiratory involvement), and mucocutaneous without cardiorespiratory involvement (7.1% vs 2.3%; RD, 4.8% [95% CI, 2.3%-7.3%]; aRR, 2.29 [95% CI, 1.84-2.85] vs respiratory involvement). Patients with MIS-C had higher neutrophil to lymphocyte ratio (median, 6.4 vs 2.7, P < .001), higher C-reactive protein level (median, 152 mg/L vs 33 mg/L; P < .001), and lower platelet count (<150 ×103 cells/μL [212/523 {41%} vs 84/486 {17%}, P < .001]). A total of 398 patients (73.8%) with MIS-C and 253 (43.8%) with COVID-19 were admitted to the intensive care unit, and 10 (1.9%) with MIS-C and 8 (1.4%) with COVID-19 died during hospitalization. Among patients with MIS-C with reduced left ventricular systolic function (172/503, 34.2%) and coronary artery aneurysm (57/424, 13.4%), an estimated 91.0% (95% CI, 86.0%-94.7%) and 79.1% (95% CI, 67.1%-89.1%), respectively, normalized within 30 days. Conclusions and Relevance This case series of patients with MIS-C and with COVID-19 identified patterns of clinical presentation and organ system involvement. These patterns may help differentiate between MIS-C and COVID-19

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Evaluation of the Hydraulic Connection between streams and aquifers at Baker and Snake Creek near Great Basin National Park, Snake Valley, White Pine County, Nevada

    No full text
    Stream channels along Baker and Snake Creek, which drain off the eastern flank of the southern Snake Range in Great Basin National Park and out into Snake Valley, were evaluated to determine their hydraulic connection with their underlying basin-fill and carbonate-rock aquifers. Characterization of this hydraulic connection included: (a) quantifying stream discharge along the creeks and analyzing variations in flow; (b) installing piezometers into the streambeds and measuring vertical head gradients from water-level measurements in both the piezometers and creeks; (c) estimating streambed hydraulic conductivities in piezometers using slug tests; (d) measuring temperature in Baker Creek, a spring, and piezometers, and analyzing variations for gain and loss rates across the streambed; and (e) doing a multiple-well aquifer test along Baker Creek. Stream discharge measurements, vertical head gradients, and streambed hydraulic conductivities were used to map gaining and losing reaches along an 8-kilometer section of Snake Creek that extends from the park boundary to the Nevada-Utah border. Snake Creek has a consistently gaining reach about 300 to 700 meters east of the park boundary where a late-Miocene fault, which juxtaposes Paleozoic footwall limestone against Miocene hanging-wall sedimentary deposits, allows Michaela spring to discharge into the creek from limestone. Snake Creek is disconnected from groundwater about 3 kilometers east of the park boundary. At this location, a recent U.S. Geological Survey monitoring well drilled 2 meters from the stream had a water level of about 60 meters below the streambed elevation, even though the creek exhibits little seepage loss. Groundwater flow models were formulated using MODFLOW-2005 to simulate gaining and losing reaches along Snake Creek and to evaluate aquifer and streambed properties contributing to the hydraulic disconnection. Results from the models suggested that aquifer hydraulic conductivities increase eastward from about 5 meters per day in the Miocene deposits to about 20 meters per day in the Paleozoic limestone and Quaternary deposits, and streambed hydraulic conductivities decrease eastward from approximately 3 meters per day to about 0.0001 meter per day. The low hydraulic conductivity of the streambed near the Utah-Nevada border was needed because of the lack of streamflow loss in a reach where depth to groundwater exceeds 30 meters.At Baker Creek, a second study location farther to the north along the southern Snake Range front, a multiple-well aquifer test was done to estimate streambed and underlying aquifer hydraulic properties over a 400-meter stream section. The test consisted of pumping a well 16 meters away from the creek for 4 days at a rate of 1.64 liters per second and included measurements of water levels and temperature along Baker Creek and in the test and monitoring wells. Water levels in shallow wells next to Baker Creek indicated the creek is losing in the immediate vicinity of the aquifer test. A computer program, SEAWAT, was used to couple MODFLOW-2005 with MT3DMS to estimate streambed and aquifer properties using drawdown and temperature data collected before and during the test with temperature used as a tracer during pumping. Model results suggested that the contact between the Miocene deposits and Quaternary alluvium dips into the alluvium from the north and south of the test site and a megablock is situated within the Miocene deposits immediately south of the pumped well. The initial temperature field had two temperature aureoles, one each around Baker Creek and a spring to the north of the test site that increased in temperature from beneath the creek and spring. The Quaternary alluvium had estimated horizontal and vertical hydraulic conductivities of 8.3 and 0.15 meters per day, respectively. The vertical hydraulic conductivity of the streambed for Baker Creek was 0.5 meter per day. Although the pumping rate was insufficient to produce a measureable decrease in streamflow along Baker Creek, water level declines indicated increased leakage near and downstream of the pumped well. The measured well temperatures during the aquifer test did not improve the estimates of hydraulic properties of the Quaternary alluvium, Miocene deposits, and the streambed beyond what was estimated from the measured drawdown because of uncertainty in knowing the initial distribution of temperature at the test site
    corecore