2,290 research outputs found

    SERS active colloidal nanoparticles for the detection of small blood biomarkers using aptamers

    Get PDF
    Functionalized colloidal nanoparticles for SERS serve as a promising multifunctional assay component for blood biomarker detection. Proper design of these nanoprobes through conjugation to spectral tags, protective polymers, and sensing ligands can provide experimental control over the sensitivity, range, reproducibility, particle stability, and integration with biorecognition assays. Additionally, the optical properties and degree of electromagnetic SERS signal enhancement can be altered and monitored through tuning the nanoparticle shape, size, material and the colloid's local surface plasmon resonance (LSPR). Aptamers, synthetic affinity ligands derived from nucleic acids, provide a number of advantages for biorecognition of small molecules and toxins with low immunogenicity. DNA aptamers are simpler and more economical to produce at large scale, are capable of greater specificity and affinity than antibodies, are easily tailored to specific functional groups, can be used to tune inter-particle distance and shift the LSPR, and their intrinsic negative charge can be utilized for additional particle stability.1,2 Herein, a "turn-off" competitive binding assay platform involving two different plasmonic nanoparticles for the detection of the toxin bisphenol A (BPA) using SERS is presented. A derivative of the toxin is immobilized onto a silver coated magnetic nanoparticle (Ag@MNP), and a second solid silver nanoparticle (AgNP) is functionalized with the BPA aptamer and a Raman reporter molecule (RRM). The capture (Ag@MNP) and probe (AgNP) particles are mixed and the aptamer binding interaction draws the nanoparticles closer together, forming an assembly that results in an increased SERS signal intensity. This aptamer mediated assembly of the two nanoparticles results in a 100x enhancement of the SERS signal intensity from the RRM. These pre-bound aptamer/nanoparticle conjugates were then exposed to BPA in free solution and the competitive binding event was monitored by the decrease in SERS intensity

    Modeling CRISPR gene drives for suppression of invasive rodents using a supervised machine learning framework

    Get PDF
    Funding: This study was supported by funding from New Zealand’s Predator Free 2050 program under Predator Free 2050 Ltd. award SS/05/01 to PWM, and from National Institutes of Health award R01GM127418 to PWM. PG-D received funding from the New Zealand BioHeritage National Science Challenge (contract 1617-28-033 A to Manaaki Whenua – Landcare Research) and from Natural Environment Research Council grant NE/S011641/1 under the Newton Latam programme. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD

    Comparison of Fe2O3 and Fe2CoO4 core-shell plasmonic nanoparticles for aptamer mediated SERS assays

    Get PDF
    Conjugation of oligonucleotides or aptamers and their corresponding analytes onto plasmonic nanoparticles mediates the formation of nanoparticle assemblies: molecularly bound bundles of nanoparticles which cause a measurable change in the colloid's optical properties. Here, we present further optimization of a "SERS off" competitive binding assay utilizing plasmonic and magnetic nanoparticles for the detection of the toxin bisphenol A (BPA). The assay involves 1) a 'target' silver nanoparticle functionalized with a Raman reporter dye and PEGylated BPA-binding DNA aptamers, and 2) a version of the toxin BPA, bisphenol A diglycidyl ether (BADGE), PEGylated and immobilized onto a silver coated magnetic 'probe' nanoparticle. When mixed, these target and probe nanoparticles cluster into magnetic dimers and trimers and an enhancement in their SERS spectra is observed. Upon introduction of free BPA in its native form, target AgNPs are competitively freed; reversing the nanoparticle assembly and causing the SERS signal to "turn-off" and decrease in response to the competitive binding event. The assay particles were housed inside two types of optofluidic chips containing magnetically active nickel pads, in either a straight or spotted pattern, and both Fe2O3 and Fe2CoO4 were compared as magnetic cores for the silver coated probe nanoparticle. We found that the Ag@ Fe2O3 particles were, on average, more uniform in size and more stable than Ag@ Fe2CoO4, while the addition of cobalt significantly improved the collection time of particles within the magnetic chips. Using 3D Raman mapping, we found that the straight channel design with the Ag@ Fe2O3 particles provided the most uniform nanoparticle organization, while the spotted channel design with Ag@ Fe2CoO4 demonstrated a larger SERS enhancement, and thus a lower limit of detection

    Update to the Vitamin C, Thiamine and Steroids in Sepsis (VICTAS) protocol: statistical analysis plan for a prospective, multicenter, double-blind, adaptive sample size, randomized, placebo-controlled, clinical trial.

    Get PDF
    BACKGROUND: Observational research suggests that combined therapy with Vitamin C, thiamine and hydrocortisone may reduce mortality in patients with septic shock. METHODS AND DESIGN: The Vitamin C, Thiamine and Steroids in Sepsis (VICTAS) trial is a multicenter, double-blind, adaptive sample size, randomized, placebo-controlled trial designed to test the efficacy of combination therapy with vitamin C (1.5 g), thiamine (100 mg), and hydrocortisone (50 mg) given every 6 h for up to 16 doses in patients with respiratory or circulatory dysfunction (or both) resulting from sepsis. The primary outcome is ventilator- and vasopressor-free days with mortality as the key secondary outcome. Recruitment began in August 2018 and is ongoing; 501 participants have been enrolled to date, with a planned maximum sample size of 2000. The Data and Safety Monitoring Board reviewed interim results at N = 200, 300, 400 and 500, and has recommended continuing recruitment. The next interim analysis will occur when N = 1000. This update presents the statistical analysis plan. Specifically, we provide definitions for key treatment and outcome variables, and for intent-to-treat, per-protocol, and safety analysis datasets. We describe the planned descriptive analyses, the main analysis of the primary end point, our approach to secondary and exploratory analyses, and handling of missing data. Our goal is to provide enough detail that our approach could be replicated by an independent study group, thereby enhancing the transparency of the study. TRIAL REGISTRATION: ClinicalTrials.gov, NCT03509350. Registered on 26 April 2018

    Delirium and the risk of developing dementia: a cohort study of 12 949 patients

    Get PDF
    Background: Delirium is an important risk factor for subsequent dementia. However, the field lacks large studies with long-term follow-up of delirium in subjects initially free of dementia to clearly establish clinical trajectories. Methods: We undertook a retrospective cohort study of all patients over the age of 65 diagnosed with an episode of delirium who were initially dementia free at onset of delirium within National Health Service Greater Glasgow & Clyde between 1996 and 2020 using the Safe Haven database. We estimated the cumulative incidence of dementia accounting for the competing risk of death without a dementia diagnosis. We modelled the effects of age at delirium diagnosis, sex and socioeconomic deprivation on the cause-specific hazard of dementia via cox regression. Results: 12 949 patients with an incident episode of delirium were included and followed up for an average of 741 days. The estimated cumulative incidence of dementia was 31% by 5 years. The estimated cumulative incidence of the competing risk of death without dementia was 49.2% by 5 years. The cause-specific hazard of dementia was increased with higher levels of deprivation and also with advancing age from 65, plateauing and decreasing from age 90. There did not appear to be a relationship with sex. Conclusions: Our study reinforces the link between delirium and future dementia in a large cohort of patients. It highlights the importance of early recognition of delirium and prevention where possible

    Electrospun amplified fiber optics

    Full text link
    A lot of research is focused on all-optical signal processing, aiming to obtain effective alternatives to existing data transmission platforms. Amplification of light in fiber optics, such as in Erbium-doped fiber amplifiers, is especially important for an efficient signal transmission. However, the complex fabrication methods, involving high-temperature processes performed in highly pure environment, slow down the fabrication and make amplified components expensive with respect to an ideal, high-throughput and room temperature production. Here, we report on near infrared polymer fiber amplifiers, working over a band of about 20 nm. The fibers are cheap, spun with a process entirely carried out at room temperature, and show amplified spontaneous emission with good gain coefficients as well as low optical losses (a few cm^-1). The amplification process is favoured by the high fiber quality and low self-absorption. The found performance metrics promise to be suitable for short-distance operation, and the large variety of commercially-available doping dyes might allow for effective multi-wavelength operation by electrospun amplified fiber optics.Comment: 27 pages, 8 figure
    corecore