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Abstract

Invasive rodent populations pose a threat to biodiversity across the globe. When confronted

with these invaders, native species that evolved independently are often defenseless.

CRISPR gene drive systems could provide a solution to this problem by spreading trans-

genes among invaders that induce population collapse, and could be deployed even where

traditional control methods are impractical or prohibitively expensive. Here, we develop a

high-fidelity model of an island population of invasive rodents that includes three types of

suppression gene drive systems. The individual-based model is spatially explicit, allows for

overlapping generations and a fluctuating population size, and includes variables for drive

fitness, efficiency, resistance allele formation rate, as well as a variety of ecological parame-

ters. The computational burden of evaluating a model with such a high number of parame-

ters presents a substantial barrier to a comprehensive understanding of its outcome space.

We therefore accompany our population model with a meta-model that utilizes supervised

machine learning to approximate the outcome space of the underlying model with a high

degree of accuracy. This enables us to conduct an exhaustive inquiry of the population

model, including variance-based sensitivity analyses using tens of millions of evaluations.

Our results suggest that sufficiently capable gene drive systems have the potential to elimi-

nate island populations of rodents under a wide range of demographic assumptions, though

only if resistance can be kept to a minimal level. This study highlights the power of super-

vised machine learning to identify the key parameters and processes that determine the

population dynamics of a complex evolutionary system.

Author summary

Invasive rodents can devastate biodiversity on small islands. This is because many types of

plants and animals that evolved on such islands have no natural defense mechanisms

against a rapidly spreading new invader. Gene drive is a promising new technology that,
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among other applications, may help control invasive rodent populations. A well-designed

gene drive system could spread an engineered gene throughout a rodent population and

eventually cause the population to collapse. We developed a detailed computational

model of the release of a suppression gene drive into an island rat population and demon-

strate that an efficient enough drive could indeed eradicate such a population within sev-

eral years. To assist with a detailed analysis of our model, which involves various

ecological and genetic parameters, we also developed a machine learning model to match

the outcomes of the underlying population model. After sufficient training, this machine

learning model is a close match to the underlying model, but runs thousands of times

faster, thereby allowing for a much more detailed analysis of the behavior of the model.

We believe that this new technique could be applied to the study of many other complex

evolutionary systems.

Introduction

Global commerce webs and rapid human migration patterns that have arisen over the last sev-

eral hundred years have resulted in the spread of various invasive species across the globe [1].

Unfortunately, some ecosystems are highly vulnerable to disruption by these invaders, result-

ing in severe ecological consequences to endemic species. Rodents such as rats can be particu-

larly damaging when introduced to remote islands, where they may find themselves

completely without predators. These small, resourceful mammals can find ample food sources

in the form of flora and fauna that evolved no defenses against such enemies. To date, humans

have introduced rats to more than 80% of the planet’s island groups [2].

Local eradication of invasive rat species is a critical conservation strategy on islands where

the invaders threaten endemic species. Eradication efforts on small and medium-sized islands

have successfully protected endangered species from extinction [3]. These efforts tend to con-

sist of combinations of hunting, trapping, and poisoning. However, it is not always practical to

scale up such strategies on larger islands. If even a small remnant of invaders survives, the pop-

ulation can rapidly bounce back after control efforts cease. This means that impactful results

cannot be achieved unless these strategies are applied continuously [4]. Such methods are also

controversial due to the risks of water contamination, suffering of the targeted species, and

inadvertent exposure and lethality to non-target species, especially native birds and livestock

[5,6]. Hence, there is a clear and urgent need for new approaches to combat invasive rodent

species in order to preserve native biological diversity.

The recent development of flexible CRISPR gene editing technology has prompted the con-

sideration of “gene drives” as potential tools to control invasive pest populations. A gene drive

is an allele that biases its genetic inheritance such that the drive allele is transmitted at higher

than Mendelian ratios [7–13]. While natural gene drives have been observed [14], CRISPR

technology has enabled the creation of artificially engineered gene drive constructs. One

prominent form of gene drive is the “homing drive”, a system in which the drive allele carries

an endonuclease gene such as Cas9 that targets and cleaves a genomic site dictated by a guide

RNA (gRNA) in germline cells. After cleaving the target site, the cell repairs the double strand

break via homology-directed repair, a process that results in the drive allele being copied onto

the previously cleaved chromosome. If such a gene drive functions with 100% efficiency,

drive/wild-type heterozygotes only produce drive-carrying gametes. As a result, the drive can

quickly spread through a population, even if it imposes a fitness cost. The design of such
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systems has been successfully demonstrated in a variety of organisms, including yeast [15–18],

flies [19–26], mosquitoes [27–30], and most recently, mice [31].

Among other potential uses, gene drives can be designed to reduce or even outright elimi-

nate a target population. Such an approach could potentially rid islands of invasive rat popula-

tions even where other control strategies cannot. For example, a recent study demonstrated

the first successful elimination of a cage population of Anopheles gambiae mosquitoes using a

homing drive that targets an essential female fertility gene such that drive homozygous females

are sterile while heterozygotes can still reproduce [32]. The drive was able to spread through

the population, and once it was present at a high enough frequency, the population quickly

collapsed.

The potential use of gene drives for the control of invasive species has sparked intense con-

troversy among scientists, regulators, politicians, and the public [33–36]. One key concern is

whether a gene drive release can be ensured to achieve the desired outcome and avoid any

unintended consequences, such as the spread of the drive beyond the intended target popula-

tion or the evolution of resistance alleles against the drive. To enable an informed discussion

of this issue, it is critical that accurate models be developed to predict the expected dynamics

and outcome of a gene drive release. These models must account for the fact that real-world

populations can differ profoundly from the small populations typically studied in laboratory

experiments. For example, spatial population structure could have a major impact on the suc-

cess or failure of a gene drive in a real-world population [37–43]. Large natural populations

could also provide a higher chance for resistance to evolve against a drive, which could ulti-

mately thwart its spread [22,27,44,45].

Numerous modeling approaches have been utilized to this end, which can be loosely cate-

gorized by the degree of abstraction present in the model. A decrease in the degree of abstrac-

tion in a model is generally accompanied by an increase in computational complexity. Models

based on differential equations present a high degree of abstraction, tend to have relatively few

parameters, and can usually be rapidly evaluated at any given point in the parameter space

[39,46–49]. Wright-Fisher models are less abstract while remaining fairly computationally

tractable, simulating a population as a panmictic collection of individuals [12,50–52], though

the cost of evaluation often increases proportionately with the number of individuals. One

notable abstraction made by these models is the assumption of discrete, non-overlapping gen-

erations [53,54]. Abandoning this abstraction in favor of simulating smaller time steps repre-

sents a further increase in computational complexity. Spatially explicit models [37,40,41,55,56]

represent yet another decrease in abstraction–one that typically comes at the cost of a signifi-

cant increase in computational overhead. The evaluation time of a spatial model in which indi-

viduals interact with one another tends to scale with the square of the number of individuals.

Not only does a less abstract model therefore take longer to evaluate at any given point in its

parameter space, such models tend to also feature an increased number of potentially variable

parameters. For instance, a panmictic model need not include any parameters related to

migration.

It is reasonable to make abstractions when doing so does not substantially impact the results

of a simulation. In the case of gene drive, however, mounting evidence suggests that many of

these abstractions can substantially alter the outcomes that models predict [37,39,40]. Relying

on models that make these abstractions could therefore result in an imperfect impression of

the conditions under which a drive could be successful in an actual release. Several studies

have highlighted the importance of using more realistic population models when assessing the

expected outcome of a suppression drive. For example, suppression drives with parameters

that invariably achieve eradication in a panmictic population model can sometimes fail in a

model with a spatially structured population due to complex metapopulation dynamics
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wherein local population collapse is followed by recolonization by wild-type individuals

[37,39,57]. The precise nature of the dynamics that play out depends on factors such as migra-

tion behavior, the rate at which wild-type populations can rebound after recolonization of pre-

viously cleared areas, seasonality, and other species-specific characteristics.

In this study, we develop a spatially explicit model of a gene drive release into an island pop-

ulation of rats with the goal of assessing the ability of the drive to eliminate such a population

under a wide range of demographic and ecological assumptions. Our model seeks to accurately

simulate life cycles and dispersal behavior within a rat population with overlapping genera-

tions, and includes a genetic component simulating three different types of suppression gene

drives with configurable fitness costs, efficiency, and resistance rates. The first drive that we

model is a homing drive which targets and disrupts an essential but haplosufficient female fer-

tility gene. The second is a homing drive that disrupts a haplosufficient gene essential for

zygote viability. The third is a non-homing Y-shredder located on the X-chromosome that

biases the population towards females by eliminating Y-chromosome-bearing gametes in

males [50].

Our model includes eight variable demographic and ecological parameters and five variable

drive-related parameters. An exhaustive exploration of the parameter space of a model with

this number of parameters would pose a substantial undertaking. One possible approach to

ameliorate this problem is to rely on human intuition to choose which parameters to vary and

which to leave at fixed values. Yet, both the selection of which parameters to vary and the selec-

tion of values at which to fix other parameters are serious points of potential failure. Important

interactions between parameters could be overlooked, and decisions about fixed parameters

can be invalidated by new ecological data. A model that fixes species characteristics at incorrect

values runs the risk of being a less accurate predictive tool than a more abstract model that

doesn’t even simulate those characteristics in the first place.

Another option is to perform a variance-based sensitivity analysis [58,59]. Such an analysis

starts with a set of input parameters sampled from a space-filling distribution and then uses

model outputs to induce the relative contribution of each parameter to the variability of the

output. However, the number of inputs required by such an analysis grows rapidly with the

number of parameters of the model, and obtaining reasonable confidence bounds on such an

analysis can therefore require the evaluation of a prohibitive number of simulations.

In order to enable a thorough probing of the parameter space without fixing any parame-

ters, we use a machine learning interpolation algorithm to create a meta-model that can pre-

dict the outcome of our population model with a high degree of accuracy at a small fraction of

the computational cost.

We implement this meta-model as a Gaussian process (GP) model. In addition to acting as

an interpolator between sparsely sampled data points, a key feature of a GP is that it does not

just make predictions, but also includes uncertainty information regarding its predictions

[60]. Because a GP is aware of its own uncertainty, it can be adaptively trained on new data

points sampled from regions of greatest uncertainty. After several iterations of adaptive sam-

pling, our GP meta-model performs with a high degree of accuracy and several orders of mag-

nitude more rapidly than the underlying population model, enabling high quality sensitivity

analyses. These analyses can provide us with an in-depth understanding of the outcome space,

including the identification of complex interactions among different parameters. We believe

that machine learning techniques similar to those used in this study may help shed new light

on the dynamics of other complex ecological systems by unlocking hitherto impractical or

impossible analyses.
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Methods

I. Population model

We implemented an individual-based population model designed to describe an island popu-

lation of rats with characteristics similar to black rats (Rattus rattus) or brown rats (Rattus nor-
vegicus) [61–64]. The model is implemented in the SLiM forward-in-time population genetic

simulation framework (version 3.3.1) [65]. The simulation takes place across a homogenous

continuous space, modeled as a square area with a side length configurable to between one

and five kilometers. The exact number of individuals present in the simulation is not fixed and

tends to fluctuate stochastically around an expected carrying capacity. For a list of demo-

graphic parameters, see Table 1.

Time steps in the simulation are equivalent to one breeding cycle, which in reality corre-

sponds to an average of two to three months, but can range from approximately one to six

months depending on the species, availability of resources, as well as the climate and time of

year. With black rats and brown rats having average lifespans of one and two years respec-

tively, it is expected that individuals in the model will be able to survive for several breeding

cycles. At the beginning of each time step, adults mate and produce offspring. This is followed

by mortality calculation and migration, after which time advances to the next step.

The simulation is initialized by randomly distributing a number of individuals equal to the

expected carrying capacity throughout the space. The population is then allowed to equilibrate

for 20 time steps, after which gene drive carrying individuals are introduced to the population.

The simulation is then run for an additional 500 time steps or until the population is elimi-

nated. The choice of 500 time steps was made because this represents a highly permissive time-

line that provides almost all gene drives that are capable of suppressing the population a

sufficient amount of time to do so. A drive that is not able to achieve success within this time-

span would have little practical value in a real-world application, as this equates to over 80

years even assuming a time step interval averaging only two months.

Reproduction. Each adult female in the population randomly selects an adult male from

within her home range, which is defined as a circle with a radius equal to the interaction dis-

tance parameter. A female does not reproduce if there are no adult males within this area. Indi-

viduals are defined as adults starting the time step after they are born. A given male can be

randomly selected by any number of females. The number of offspring produced by a pairing

is drawn from a Poisson distribution with a mean defined by the litter size parameter. Newly

generated offspring are each placed in a position that is offset from their mother in a random

direction and a distance drawn from an exponential distribution with a mean equal to the

average dispersal distance parameter, representing offspring leaving the nest after they are

Table 1. Demographic/Ecological Parameters.

Demographic/ecological Parameters Minimum Default Maximum

Density (individuals / km2) 600 1000 1500

Island side length (km) 1 2 5

Interaction distance (m) 60 75 300

Average dispersal distance (m) 25 250 1000

Survival rate 0.7 0.9 0.95

Litter size 2 4 8

Migrant frequency 0 0.1 0.5

Adult dispersal distance multiplier 1 2 5

https://doi.org/10.1371/journal.pcbi.1009660.t001
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weaned. These default reproduction rules are subject to change by gene drive mechanics, as

described below.

Migration. In addition to the offspring dispersing from their mothers, other individuals

may migrate as well. Every time step, each adult has a probability to migrate equal to the

migrant frequency parameter, representing the possibility that individuals will leave their nests

in search of a new home area. Migrants move a distance equal to a draw from an exponential

distribution with a mean defined by the average dispersal distance parameter multiplied by the

adult dispersal distance multiplier parameter. This represents the ability of fully grown individ-

uals to potentially cover more ground than young individuals. An exponential distribution

was chosen because data indicates that motivated rats are capable of traveling vast distances

under some conditions [66,67]. An exponential distribution should mirror this behavior. In

both migrant movement and offspring placement, if a location is drawn that falls outside the

bounds of the simulation, a new location is drawn (known as “reprising” boundaries) [68].

Survival rate. Non-migrant adults experience a flat mortality rate equal to one minus the

survival rate parameter. Juveniles and migrant adults are less likely to survive, accounting for

higher rates of mortality among newborns, as well as competition for territory and resources

in a new area. This increased mortality rate grows with the local density of individuals. Indi-

viduals experience competition from every other individual within a radius defined by the

interaction distance parameter. The strength of competition exerted by any given individual is

a function of the distance to that individual, and is defined by a Gaussian curve with a maxi-

mum value of one and a standard deviation (σ) of one-third of the interaction distance param-

eter, i.e.:

competiton ¼ e
� distance2

2s2

This results in closer-together individuals competing more intensely than further-apart indi-

viduals, which should prevent over-clustering within the population [69,70]. Individuals with

interaction areas that extend beyond the boundaries of the simulation tend to have fewer com-

petitors, which could result in clustering near the edges of the island. In order to prevent such

edge clustering, the total competition these individuals experience is scaled to compensate for

the missing area. The total competition experienced by an individual is then scaled by a density

tuning coefficient, described below. The final survival rate of juveniles and migrants is given

by the survival rate parameter minus the scaled total of competition.

Carrying capacity. In our model, each female can reproduce a non-deterministic number

of times, and individuals survive at different rates if they are migrant or non-migrant. Because

of this complex behavior, the population size is regulated via a “density tuning coefficient”

which is calculated at the outset of the simulation, and which calibrates the capacity of the sys-

tem to approximately the amount expected given the specified density and island side length

parameters.

The density tuning coefficient is calculated by approximating the population size N over

time as a recurrence relation. Loosely:

Nðnext time stepÞ ¼ non� migrants � s0 þ ðmigrantsþ newbornsÞ � sd

where s0 is the default survival rate, and sd is the reduced survival rate of individuals experienc-

ing density dependent competition. More specifically, if a population at time t has size N(t),
given that the number of newborns is equal to half the population size (the number of females)

multiplied by the litter size parameter L, and given the migrant frequency M, we have:

Nðt þ 1Þ ¼ NðtÞ � ð1 � MÞ � s0 þ NðtÞ � ðL=2þMÞ � sd
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The survival rate of individuals experiencing density dependent competition is defined as:

sd ¼ s0 � density tuning factor � avg competition

Given the Gaussian competition function, the average expected competition can be solved for.

Average competition is found by taking the integral of the density competition function,

which is then integrated over the area of competition. This results in:

avg competition ¼ 2ps2 � NðtÞ � ð1þ L=2Þ

Finally, these equations can be solved for the required density tuning coefficient by setting N
(t) and N(t+1) to both equal the desired carrying capacity of the system (as defined by the den-

sity parameter and the island size parameter).

This recurrence relationship is a good approximation of the actual population. However,

variations in population density that can develop across the landscape, along with other sto-

chastic factors, mean that the actual population can have a slightly different trajectory. The

approximation also does not take into account the possibility of females not being able to find

mates, though this should be a rare occurrence in an undisturbed population. The result is that

the actual carrying capacity of the simulation can vary from the expected carrying capacity by

a few percent, depending on the exact parameters of the simulation.

Choice of parameter values for the population model. The ranges selected for the demo-

graphic parameters were chosen to represent a wide variety of both black and brown rat popu-

lations in New Zealand (Table 1). These ranges were selected after carrying out a systematic

literature review to gather information on demographic characteristics of wild populations

[71]. This report is available at https://datastore.landcareresearch.co.nz/dataset/rodent-review-

datasets. In cases where the real-life parameters are more difficult to accurately determine

(e.g., migrant frequency), we opted to explore wide intervals to ensure that the vast majority of

real-life populations of both species of rat are encompassed by our parameter space.

Gene drive model. Three gene drive strategies are modeled: (i) a homing drive targeting

an essential but haplosufficient female fertility gene, (ii) a homing drive targeting an essential

but haplosufficient viability gene, and (iii) a non-homing Y-shredder located on the X-chro-

mosome. For a list of drive-related parameters, see Table 2.

The gene drive release is accomplished by randomly selecting a percentage of individuals in

the simulation, as defined by the release percentage parameter, and converting them to drive/

wild-type heterozygotes. These individuals immediately experience density dependent mortal-

ity as if they were migrants needing to establish themselves in new territory.

The mechanism of the two homing drives is that, when generating offspring, there is a pos-

sibility that gametes from heterozygote parents have been converted from wild-type to drive.

The first step is the possibility of resistance allele formation, which occurs at a rate controlled

by the resistance rate parameter. Resistance alleles can be of type “r1” or of type “r2”. Resis-

tance alleles of type r1 preserve the function of the targeted gene, while r2 alleles disrupt the

target gene, just as the drive itself does. A portion of the resistance alleles formed are generated

Table 2. Gene Drive Parameters.

Parameter Minimum Default Maximum

Release percentage 0.01 0.1 0.5

Drive fitness 0.5 or 0.75 1 1

Drive efficiency 0.5 or 0.75 N/A (variable) 1

Resistance rate 0 0 0.1

Relative R1 resistance rate 0 0 0.02

https://doi.org/10.1371/journal.pcbi.1009660.t002
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as type r1 alleles, as specified by the r1 resistance rate parameter. Otherwise, the allele will be of

type r2. Generally, r2 alleles are much more common since the end-joining repair process that

creates resistance alleles usually introduces a frameshift mutation or otherwise sufficiently

changes the protein structure to prevent its effective function [11,19,20,22–24,28,31]. If resis-

tance does not form, there is a chance that the gene drive is copied via homology directed

repair, converting the chromosome to a drive chromosome. This likelihood is defined by the

drive efficiency parameter. Note that this means a drive will convert fewer wild-type alleles to

drive alleles if the resistance rate is higher, even given the same drive efficiency parameter. If

neither resistance nor drive conversion occurs, the offspring receives the unaltered wild-type

allele. Aside from these homing mechanics, the drive targeting a haplosufficient female fertility

gene renders female drive homozygotes completely sterile. The drive targeting the haplosuffi-

cient viability gene results in drive homozygotes being immediately removed when generated.

In both drives, r2 alleles impact fertility or viability as if they were drive alleles.

In contrast with the other two drives, the Y-shredder is not a homing drive (though homing

sex-chromosome shredder drives have been proposed and constructed [50,72–74]). The drive

is located on the X-chromosome and shreds the Y-chromosome in germline cells. This results

in drive carrying males producing offspring at a biased ratio determined by the drive efficiency

parameter. For example, a male with a drive efficiency of 80% has offspring at a ratio of nine

females to one (we define drive efficiency as the fraction of offspring that are generated as

females instead of males; 50% would normally be generated as male; this is multiplied by the

80% drive efficiency, resulting in the total percent of offspring that are generated as female

being increased from 50% to 90%). The biased sex of the offspring is also the mechanism of

drive spread since the daughters of drive carrying males are all drive carriers. Resistance was

not simulated against the Y-shredder because the drive does not rely on homology directed

repair and could likely target a large number of sites simultaneously with several gRNAs [45].

Aside from the drive mechanics themselves, the drive allele can also be configured to have a

fitness cost via a drive fitness parameter. For simplicity, the drive is considered to be dominant

for purposes of fitness impact, which is thus modeled as an equal cost for both homozygotes

and heterozygotes. The fitness cost of the drive is implemented as a flat survival rate multiplier

that is applied during each time step and has no other effect (e.g., on fecundity) except as

defined by the drive mechanics.

For the two homing drives, we explored the parameter space separately with resistance sim-

ulated as well as with resistance fixed at zero. When exploring the parameter space without

resistance, the minimum values for drive fitness and drive efficiency were set at 0.5. When

exploring the parameter space with resistance, as well as the parameter space for the Y-shred-

der, the minimum values for drive fitness and drive efficiency were set at 0.75.

The data collected from each simulation includes the following: the actual population

capacity (as averaged over the ten time steps before the drive is released), the frequency of the

drive allele at the end of the simulation, the frequency of resistance alleles at the end of the sim-

ulation, the minimum population size from throughout the simulation, the population size at

the end of the simulation, and the time step at which the population was eliminated if it was

eliminated.

In the context of a suppression gene drive release, “failure” can describe several qualitatively

different scenarios. These include drive loss (either due to fitness effects or competition pre-

venting the drive from spreading), local collapse before the drive can sufficiently spread, or

equilibrium outcomes wherein the drive does not have sufficient suppressive power, but

merely reduces the population to a new equilibrium size [12,37,46,75]. Another possible sce-

nario is “chasing” dynamics wherein the drive recurrently eliminates the population from local

areas, which are then recolonized by wild-type individuals entering from other areas [37]. A
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final possible failure outcome is a selective sweep of “r1” resistance alleles, which preserve the

function of the target gene. These alleles can spread rapidly as drive and wild-type alleles are

eliminated [23]. By contrast, drive success generally takes only two forms. The drive either

steadily increases until the population collapses, or the population might be eliminated only

after a period of fluctuation or chasing dynamics in which the drive eventually becomes too

pervasive within the remaining population, which then collapses. While it is possible to classify

each of these success and failure scenarios differently [37], the transitions between each state

can be quite ambiguous, and we therefore focused our analysis on simply determining if the

drive completely eliminated the population or if it failed to do so.

II. Gaussian process framework

We trained a machine-learning based meta-model on our population model in order to enable

a more computationally efficient exploration of the outcome space of the model. The meta-

model is implemented as a Gaussian process (GP). A GP model can act as a regressor between

sparsely sampled data points and also includes a confidence interval for each point that it pre-

dicts. A GP defines a probability distribution over infinitely many possible functions. This

prior distribution is updated as the model is conditioned on training data and undergoes itera-

tive marginalization, resulting in a predictive posterior distribution over the function set that

can then be sampled to yield a predicted mean and a confidence interval [60]. Our GP models

were constructed using the GPyTorch library for Python, which is built on the PyTorch

machine learning framework and can utilize GPU resources for parallel processing through

Nvidia’s CUDA platform (GPyTorch version 1.0.1, PyTorch version 1.4.0, CUDA version

10.1, Python version 3.7.6) [76–79].

The predictions that a GP makes are substantially impacted by its covariance function,

known as a kernel [60,80,81]. We chose the Matérn kernel with a smoothness parameter ν =

0.5, which is equivalent to the absolute exponential kernel [80]. The function approximations

produced by this kernel are less smooth than those produced by many others, making this a

kernel suitable for approximating functions with rapid changes in slope.

Model output. For each possible input point in the parameter space, the population

model yields many outputs that we may be interested in. While a single GP model can be

trained to produce multiple outputs, we chose to train GPs on only one output at a time for

the sake of simplicity. We selected two different outputs that seemed most descriptive of

whether the drive succeeded or failed at a given point in the parameter space and trained a GP

separately on each.

The first output is the percent of simulations at each point that resulted in complete sup-

pression, as determined from 20 replicates at each simulated point (we will refer to this as the

“suppression rate” model). While this constitutes an intuitive choice, an initial assessment of

our data gave us some concern that this GP might have trouble drawing good inferences. Spe-

cifically, we observed that our data was largely binary–in the data sets for the viability targeting

homing drive and the Y-shredder, less than 1% of parameter points resulted in a suppression

rate other than 0% or 100% (with the female fertility target, this was about 5% of points). We

further observed that transitions between drive success and failure can be extremely sudden–a

parameter point at which the drive fails in every simulation might instead result in success in

every simulation if the drive efficiency is increased by only two or three percent (this was our

motivation for selecting the Matérn kernel).

We hypothesized that this feature of the outcome space could cause the GP model to make

suboptimal inferences. Consider, for instance, a drive that succeeds about half of the time

when drive efficiency is 0.8 (with all other parameters fixed at a set of values X); when the drive
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efficiency is 0.81 or higher, the drive always succeeds; when the drive efficiency is 0.79 or

lower, the drive always fails. Within this context, suppose we have a sparse training set with a

point at (0.5, X), and a second point at (1.0, X). In the absence of any other information, a sim-

ple interpolator should assume a transition from success to failure at 0.75. Yet if the second

point were instead at (0.9, X), an interpolator will assume a transition point at 0.7. This prob-

lem could result in the GP requiring much more data in order to perform accurately. A train-

ing set with (0.5, X) and (0.75, X) might be even more harmful–with these points, the marginal

effects of the parameter on the population model are completely lost, and the interpolator

learns nothing (or worse, learns that drive efficiency does nothing). A GP model is more

nuanced than a linear interpolation, but these issues could nonetheless impact the model’s

ability to fit the underlying function.

With these potential issues in mind, we trained a second GP model on a composite value

gathered from our simulations (the “composite” model). This value consists of different infor-

mation depending on whether or not suppression occurred. When suppression occurs, this

value corresponds to the speed at which suppression occurred; specifically, the time of sup-

pression divided by the maximum allowed number of time steps in the simulation (500).

When suppression does not occur, this value corresponds to how much of an impact, if any,

the drive had on the population size. Specifically, the composite value is calculated as:

f Xð Þ ¼
1 �

time of suppression
500

; Drive success

�
min pop size

capacity pop size
; Drive failure

8
>><

>>:

This function is continuous between values where the drive suppresses and fails to suppress,

with values near one representing drives that rapidly suppress the population, values near neg-

ative one representing drives that do nothing to the population, and with a value of zero repre-

senting the weakest possible successful drive (which manages to suppress the population only

at the very last of the allotted 500 time steps). As before, each data point consists of an average

from 20 replicates.

The composite model could potentially alleviate some of the problems the suppression

model can face with smaller training sets by “widening” the intervals over which the outcome

of the drive transitions from failure to success. However, the predicted output values could in

turn also be less accurate in these areas. For example, when data points are averages of some

simulations wherein suppression occurred and some simulations wherein it did not, the com-

posite value might not line up perfectly with expectations of the rate of suppression. Consider,

for instance, a data point consisting of 20 runs, eight of which caused suppression at time step

400, and twelve of which caused the population to decrease to ten percent of carrying capacity.

This results in a composite value of 0.02. A composite value greater than zero should indicate a

point at which we expect the drive to usually succeed, which does not completely square with

the fact that only 2/5 of simulations resulted in elimination of the population in this example.

We decided to implement both types of models (suppression rate and composite), hypothe-

sizing that the strengths and weaknesses of these two training approaches may be complemen-

tary, with the “suppression rate” GP performing inference poorly without a larger data set, but

perhaps being better able to describe the areas of transition from drive success to drive failure

after sufficient data is gathered.

GP assessment. We evaluated the accuracy of our GP models by assessing root-mean-

square error (RMSE) between actual output generated by the population model and the output

predicted by the GP models, as well as by measuring precision and recall. For the suppression
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rate model, the RMSE was calculated between model predictions and the actual observed sup-

pression rate. For the composite model, model predictions were scaled from [–1,1] to [0,1],

after which those predictions were also compared to the observed suppression rate. While

RMSE is a standard choice when assessing the fit of an interpolator, the measurement is not

always a good indicator of model quality if a data set is unbalanced. For example, if the data

consists of thousands of near-zero values and only a handful of successes, a model that simply

always predicts zero has a very low RMSE despite not being a particularly useful model.

For this reason, we also assessed our GP models by measuring their precision and recall. Preci-

sion measures the proportion of predicted positives that are true positives (true positives / all posi-
tive predictions); recall measures the proportion of actual positives that the model identifies (true
positives/actual positives). We define “actual positives” as any point in the data that resulted in

suppression in at least 50% of simulations. We then map our GP models to a binary classification,

with the suppression rate model considered to predict a positive when the model predicts 0.5 or

greater and the composite model considered to predict a positive when the model predicts 0 or

greater. As mentioned, the vast majority of the parameter space consists of points where suppres-

sion occurs in 0% or 100% of simulations, so very little fidelity is lost by this mapping to a binary

classification. This method of assessment is robust to imbalanced data sets.

For the testing data sets, we generated 10000 parameter points from a Latin hypercube sam-

pling of the parameter space for each drive. This sampling ensures that a set of points is fairly

representative of the possible variability in the space [82]. In the test sets for the Y-shredder

and the homing drives with resistance, there were very few points where the drive was success-

ful, so we supplemented these testing sets with an additional 3000 Latin hypercube sampled

points with drive fitness and efficiency of 0.9 and greater in order to ensure that there were suf-

ficiently many successes to be able to accurately evaluate the model.

Because the outcome of our population model is stochastic, each point in our data sets was

simulated 20 times. An alternative approach would have been to simply sample 20 times as many

points. However, the computational complexity of training the GP models scales with the square

of the number of data points [76], so we elected for a smaller data set wherein each point has

more “weight” in terms of how much information it provides. We created five separate groups of

data sets: one each for the female fertility targeting homing drive with and without resistance, one

each for the viability gene targeting homing drive with and without resistance, and one for the Y-

shredder. The data sets for the homing drives without resistance have lower minimum drive fit-

ness and drive efficiency values (0.5 instead of 0.75) and will also serve to cross-validate the GP

models for the same drives with the added resistance parameters.

Training procedure. GP training is an iterative process wherein the model is repeatedly

tuned and optimized (Fig 1). Too little training can result in the model failing to draw infer-

ences that it otherwise could, yet performing too many training iterations on the same data set

can result in overfitting and a gradual decline in model quality. Furthermore, training is sto-

chastic, so the amount of training required to get the best possible model can vary. In practice,

it can be difficult to identify the sweet spot without evaluating the model against a testing data

set. Yet doing so with our actual test sets would result in a GP that is specifically tuned to fit

the data set that is being used to evaluate it. To circumvent this issue, we generated a validation

data set to use as a testing set to evaluate interim models. This validation data set also consists

of 10000 Latin hypercube sampled points for each drive, further bolstered with some addi-

tional points sampled from areas of the model where we expect the drives to perform well.

To train an initial instantiation of the GP models for each drive, we evaluated 1000 parame-

ter points from a Latin hypercube sampling of the parameter space. These models (as well as

all subsequent models) were trained for 30000 iterations, with the model being saved every
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1000 iterations. Each saved model was evaluated against the validation data set, and the model

that performed best was ultimately selected as the best model for that data set.

Because each prediction made by a GP also comes with a confidence interval, the data set

used to train a GP can be adaptively expanded. We implemented two adaptive training strate-

gies and generated a set of ten million Latin-hypercube-sampled parameter points to be evalu-

ated by these strategies for each drive, with the selected points ultimately being simulated by

the population model and then added to the training set for the GP model.

The goal of the first sampling strategy was to bolster the data set with additional points where

the model has the greatest uncertainty (i.e., the widest 95% confidence intervals). In this strategy,

the probability of drawing a given point i with a 95% confidence interval width of wi is:

pi ¼
wiP
w

However, model output uncertainty is not necessarily the same as outcome uncertainty. For

example, the composite GP might predict a mean of 0.5 and a 95% confidence interval of 0.1

to 0.9, corresponding to a prediction that the drive will suppress, but a high degree of uncer-

tainty about how long it will take to suppress. Conversely, however, the GP is reasonably cer-

tain that the final outcome will be population elimination, as the entire 95% confidence

interval is greater than 0. We therefore implemented a second adaptive training strategy in

order to better develop our understanding of areas of the model with uncertain outcomes.

This strategy is built on top of the previous strategy, but linearly scales down the likelihood of

choosing points with more extreme predicted outputs. In the composite model, the probability

of choosing a given point i with a 95% confidence interval width of wi and a predicted mean of

vi is:

pi ¼
wi � ð1 � jvijÞP
ðw � ð1 � jvjÞÞ

Fig 1. Gaussian Process model schematic. The training set started as 1000 randomly sampled points, and the models were considered complete after the

training set had been iteratively grown to 10000 points.

https://doi.org/10.1371/journal.pcbi.1009660.g001
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The exact implementation for the suppression rate GP differs, slightly: instead of linearly

devaluing points as the predicted value at those points grows more distant from zero, points

are linearly devalued as they become more distant from 0.5.

In order to take full advantage of available computing resources, adaptively sampled points

were chosen 1000 at a time, after which those points were simulated, and the model was

retrained on the new data. This process was repeated until the training data sets for each drive

had grown to 10000 points. Of the 9000 adaptively sampled data points, 1000 were sampled

using the first of these strategies and 8000 were sampled using the second. Half of the adaptive

points were selected using the composite model, and half were selected using the suppression

rate model.

III. Sensitivity analysis

In order to gain an understanding of which input parameters most affect the outcome space of

the model, we conducted sensitivity analyses on our GP models using Sobol’s method [59].

This method uses a Monte Carlo integration method to decompose variance in the output

space into a relative measure of the contribution of each input parameter [59]. The relative

contributions of each parameter calculated by this method are termed “sensitivity indices”. We

calculate sensitivity indices not just for the “first-order” effects of each parameter, but also the

“second-order” effects and the “total-order” effects. The first-order effects describe the contri-

bution of varying a parameter to the output when that parameter is varied alone (averaged

over variations in all other parameters). The second order indices measure the pairwise syner-

gistic effects of parameter interactions on the output. The total-order effects take into account

all first-order, second-order, and higher-order effects of each parameter on the output [83].

These sensitivity analyses were performed using the SALib sensitivity analysis library for

Python (SALib version 1.3.8, Python version 3.7.6) [84].

The first step in determining these indices is to generate a Sobol sequence of model input

points to test. This is a quasi-random, low-discrepancy sequence, which is designed to mini-

mize gaps in the parameter space [59,85]. These points are arranged in two matrices with d col-

umns and n rows, where d is the number of dimensions of the model (i.e., the number of

parameters) and n, termed the “base sample,” is a freely selected value to which the final accu-

racy of the analysis is responsive [58,85]. Aside from these matrices, an additional 2�n evalua-

tions are required, resulting in n(2d+2) model evaluations in total [85]. Once the required

parameter inputs are generated, they are evaluated by the model, after which the sensitivity

indices are calculated using the model’s output.

The accuracy and reliability of the analysis is generally proportionate to the size of n. For

example, if n is set to 1000, a sensitivity analysis on a model with 5 parameters would require

12000 queries to the model and would be about as accurate as an analysis of a model with 10

parameters that uses 22000 queries, though the complexity of the parameter interactions can

render this relationship non-exact [85]. This type of sensitivity analysis yields confidence inter-

vals for the indices in addition to the indices themselves. Other users of this technique suggest

that n should be chosen such that the most important parameters have confidence intervals

that are less than 10% of the magnitude of the indices themselves [86]. We used an n of one

million for our sensitivity analyses, providing very tight confidence intervals.

Nothing about the underlying population model precludes a direct sensitivity analysis other

than computation time. However, a sensitivity analysis for one drive with n of one thousand

would require almost as many simulations as the entire training and validation of a GP model

for that drive, and such a sensitivity analysis would likely be fairly inaccurate, with very wide

confidence intervals.
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Results

I. Population model

Default population model. Our population model simulates the release of one of three

different types of suppression gene drives into an island population of rodents to assess if the

drive can eliminate the population. We first examined the population model in the absence of

any gene drive release in order to verify that the model dynamics are reasonable and generally

match our expectations of rat population dynamics.

The default parameters of the model call for an island side length of two kilometers and a

density of 1000 individuals per square kilometer (see Table 1), resulting in an estimated carry-

ing capacity of 4000 individuals. Actual density within the population is a function of a density

tuning coefficient that is calculated at the outset of the simulation. Due to minor discrepancies

between the function that calculates this value and the model itself (e.g., individuals in the

model are not uniformly distributed, along with other stochastic effects), the actual capacity of

the system is an emergent property that varies slightly from the estimated value. With default

parameters, the capacity of the system was about 6% higher, with the population tending to

fluctuate between 4100 and 4400, with an average size of about 4250 (Fig 2, left panel).

The age distribution of individuals in the model is dependent on a flat survival rate parame-

ter, as well as on density dependent competition faced by migrants and newborns. On average,

with default parameters, 90% of the population was 12 time steps old or less, while about 1% of

the population consisted of individuals who had survived 24 time steps or more (Fig 2, center

panel). This matches our expectations of a high death rate among young rats and increasingly

few individuals surviving to older ages [61,87]. The average age in the population was 4.6 time

steps, while the life expectancy of individuals who survived to adulthood (i.e., individuals who

survived their first time step) was 5.6 time steps, equivalent to around 9 to 14 months and 11

to 17 months respectively assuming a time step duration of two to three months. This is close

to the general dynamics we expect in a real population.

Fig 2. Population dynamics without gene drive release. Left panel: Population size fluctuations over time are shown after the population is initialized at the

approximated capacity of 4000. The average population size was 4257 individuals. Center panel: The average frequency of each age, as determined by tabulating the ages of

each individual between time step 100 and 500 of the simulation. Right panel: Ripley’s L at length scales from 0 to 200 meters. This plot shows the difference between

Ripley’s L statistic in the simulation and the expected value of a random distribution. Negative values indicate that a population is more dispersed than a randomly

distributed population. Density dependent competition takes place at a maximum distance of 75 meters and is more intense between close-together individuals, resulting

in a slightly dispersed population.

https://doi.org/10.1371/journal.pcbi.1009660.g002
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To measure deviations from spatial homogeneity between individuals in the population, we

estimated Ripley’s L function within our model. This function describes whether a set of points

are dispersed or clustered at any given length scale as compared to randomly distributed points

[88–90]. We assessed the population after 20 time steps and found that individuals tended to

be somewhat more dispersed than random at length scales below 100 meters. Beyond this dis-

tance, the population is only marginally more dispersed than a random set of points. This cor-

relates fairly well with the default maximum competition distance parameter of 75 meters,

indicating that density dependent competition appears to have discouraged clustering as

intended (Fig 2, right panel).

Gene drive performance in the default population model. After verifying the demo-

graphic characteristics of the model, we tested the ability of each of the three gene drives to

suppress the population. We found that each of the three drives is capable of suppressing the

population given a sufficiently high drive efficiency, no resistance, and otherwise using default

parameters. The transition between invariable failure and invariable success occurs rather

abruptly as efficiency is increased beyond a threshold (Fig 3).

We first assessed the homing drive with a haplosufficient female fertility target. This drive

required the lowest efficiency in order to achieve success. At 84% efficiency, 2% of simulations

resulted in complete suppression, increasing to 100% of simulations at 87% efficiency. We also

found that efficiency impacted the average time it took to eradicate the population. With 85%

efficiency, the drive took an average of 377 time steps to eradicate the population when it suc-

ceeded. With 95% efficiency, the drive took an average of only 158 time steps (Figs 3 and 4).

With 85% efficiency, suppression usually occurred only after a moderate amount of fluctuation

in the population size, while the drive with a 95% efficiency caused the population to decline

Fig 3. Drive efficiency required to eliminate the population using the default model. Drive efficiency was varied in 1% increments, leaving other parameters at default

values, with 100 simulations conducted at each point. A “successful run” is defined as a simulation in which the population is completely eliminated within 500 time steps.

https://doi.org/10.1371/journal.pcbi.1009660.g003
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smoothly once the drive had spread (Fig 5). When drive efficiency was less than 84%, the pop-

ulation was reduced to a smaller equilibrium size, though there also appeared to be shifting

migration patterns that ambiguously resemble the chasing phenomenon that was more clearly

seen in a discrete generation model [37].

The homing drive with a haplosufficient viability target required a higher efficiency to suc-

ceed. This drive was able to eliminate the population when it had an efficiency of above 95%

(Fig 3). With a 96% efficiency, the drive took an average of 340 time steps to completely sup-

press the population and exhibited fairly similar dynamics to the drive with a female fertility

target with an 85% efficiency. Insufficient drive efficiency resulted in the same type of reduced

equilibrium population as observed in the drive with a female fertility target. This reduced effi-

ciency compared to the female fertility drive is due to the lower genetic load from the drive at

equilibrium, since drive alleles are removed in both male and female individuals.

The Y-shredder required the highest efficiency to succeed. The drive was only successful

when it had 99% or 100% efficiency (Fig 3), in which case it completely suppressed in 84% and

100% of simulations respectively. Notably, “efficiency” in the Y-shredder is achieved by

destruction of the Y-chromosome in germline cells, a fundamentally different process than the

homology-directed repair required for the copying of homing drives. Thus, efficiency levels

cannot be directly compared between these different types of drives, and it is unclear based on

previous studies how difficult it may be to engineer each type of drive with a requisite effi-

ciency. With a 99% efficiency, the Y-shredder took an average of 380 time steps to eradicate

the population. When this drive had too little efficiency, the population size actually increased.

This is because a female-biased sex ratio of the population resulted in more total offspring in

each time step (the number of females that each male can reproduce with is not limited in our

model), which was also found by Prowse et al.[50]. This limitation may partially account for

Fig 4. Time from release until suppression for the drive targeting female fertility. Number of time steps until

population eradication for the homing drive with a female fertility target using default parameters and a drive

efficiency of 95% (blue) and 85% (orange). One thousand simulations were performed for each drive.

https://doi.org/10.1371/journal.pcbi.1009660.g004
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the Y-shredder’s worse performance than in that study, which used panmictic populations and

an absolute limitation on the number of females each male could mate with during each time

step.

II. Gaussian process framework

We created two different types of Gaussian process (GP) meta-models, differentiated by the

outputs from the underlying population model used to train them. Both models are designed

to predict whether the drive will eliminate the population within 500 time steps of the drive

Fig 5. Gene drive spread over time for the drive targeting female fertility. A series of snapshots showing the progress of a

single simulation of the homing drive with a female fertility target using default parameters and a drive efficiency of 95%.

Black dots are wild type, green dots are drive/wild-type heterozygotes, and blue dots are drive homozygotes. The upper left

panel depicts the time step at which the drive was introduced to the population. At first, the drive rapidly spreads through

the population (upper right). After the drive has reached a sufficient frequency, the population dwindles in size (lower left)

until almost all possible pairings only produce sterile offspring (lower right), leading to population elimination shortly

thereafter.

https://doi.org/10.1371/journal.pcbi.1009660.g005
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release. The output used to train one model was a composite value that comprises time to sup-

pression if suppression occurs and final population size if suppression does not occur. The out-

put used to train the other model was simply the portion of simulations in which suppression

occurred. We gauge the success of our GP models by two factors: first, how much faster the

meta-model evaluates data points than the underlying population model, and second, how

accurately the meta-model predicts the outcomes of the underlying population model.

GP evaluation speed and training time. We found that both GP models are several

orders of magnitude faster than the underlying model. The runtime of the underlying model is

highly dependent on the parameters selected. A simulation of a rat population over 500 time

steps with default parameters and without a gene drive takes approximately 30 seconds. A sim-

ulation with fewer individuals and a highly effective gene drive can finish in just a few seconds.

However, simulations with larger numbers of individuals (e.g., for much larger islands or

denser populations) can take longer than one hour. These runtimes are representative of

speeds attained on Cornell’s BSCB computing cluster using Xeon E5 4620, Xeon E7 4830, and

Xeon E7 4850 CPUs. Further, given the stochastic nature of the model, numerous runs per

data point are necessary to enable reliable conclusions to be drawn.

The GP model, on the other hand, once trained, evaluates all data points with equal speed,

at a rate of approximately 45,000 points per second. Producing a 1000 by 1000 point heatmap

analysis takes approximately 23 seconds. Sensitivity analyses requiring 24 million (drives with-

out resistance) or 28 million (drives with resistance) model evaluations took 45minutes and

one hour, respectively (the majority of that time is spent generating the data points to be evalu-

ated). These runtimes are representative of speeds attained on a desktop computer using an i9-

9900K CPU and a GeForce 2080Ti GPU.

The time spent training the models in the first place was bottlenecked mostly by the evalua-

tion speed of the population model. The process consisted of several iterations of running

1000 simulations, training the GP model, and then choosing 1000 new points to simulate (see

methods). Each point in the parameter space used to train the GP model consisted of an aver-

age of twenty simulations for that point. Most points took an hour or less to simulate, but the

longest points took about 24 hours. Thus, even when sufficient CPU resources were available

to run 1000 simulations in parallel, this portion of the training process always took a full 24

hours. The training time required by the GP model increased as the size of the training set

increased. With 1000 points, the time to train was about 20 minutes. This scaled up to about 3

hours as the data set reached 10000 points. The selection of new points was done by evaluating

a set of ten million points using our adaptive sampling algorithm, which took only a few min-

utes. There was no noticeable difference in the required training time for the suppression rate

model and the composite model, nor is there a noticeable difference in evaluation time.

GP accuracy measurements. We assessed the accuracy of our GP models in terms of

root-mean-square error (RMSE), precision, and recall (see methods). Each of the models was

assessed against a test set consisting of semi-random points from a Latin hypercube sampling

of the parameter space. Models trained on drives including resistance were also assessed

against the test sets for the versions of those drives without resistance. In most cases, the final

GP models appear to be excellent predictors of the underlying population model (Table 3).

As adaptively sampled data points were added to the initial 1000 training points, the model

quality increased rapidly at first, but with diminishing returns. Generally, the first and second

set of adaptively selected points increased model performance substantially. The quality mea-

surements for the GP model occasionally declined slightly after some batches of adaptive sam-

pling, though usually these were minor fluctuations. Generally, model quality continued to

improve throughout the course of adaptive sampling, indicating that further improvements

may be possible with larger data sets (Figs 6 and S1).
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Model performance was better for drives with larger areas of success, such as the homing

drive with a female fertility target. These differences were especially large before adaptive sam-

pling. The models for drives with very small areas of success had trouble detecting those areas,

and thus suffered from higher rates of false negatives.

The model trained on the composite output from the population model generally had more

false positives, while the model trained on the suppression rate from the population model had

more false negatives. The suppression rate models tended to outperform the composite models

more when the models included drive resistance (possibly because the minimum population

level could vary greatly depending on when and where r1 resistance alleles formed, resulting in

a more stochastic composite value). However, the composite models tended to have much

Fig 6. Model quality, female fertility homing drive without resistance. The model was evaluated against the 10000-point Latin Hypercube sampled test set. This drive

has a larger area of success than all of the other drives, and thus, the GP model performs relatively well, even before adaptive sampling, compared to the other models. The

first few adaptively sampled data sets substantially improved the performance of the model, after which improvements were smaller. See S1 Fig for similar plots for the

other models.

https://doi.org/10.1371/journal.pcbi.1009660.g006

Table 3. Gaussian Process Model Accuracy.

GP Model Rate of suppression in

test set

RMSE

(composite)

Precision

(composite)

Recall

(composite)

RMSE (sup.

rate)

Precision (sup.

rate)

Recall(sup.

rate)

F. fertility homing w/o

resistance

0.21 0.09 0.94 0.95 0.07 0.97 0.95

F. fertility homing with

resistance

0.16 0.13 0.78 0.90 0.05 0.96 0.84

Viability homing w/o

resistance

0.03 0.06 0.88 0.96 0.02 0.98 0.89

Viability homing with

resistance

0.02 0.08 0.87 0.67 0.01 0.99 0.85

Y-shredder 0.05 0.13 0.94 0.69 0.03 0.93 0.84

See S1 Table for additional comparisons.

https://doi.org/10.1371/journal.pcbi.1009660.t003
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narrower confidence intervals, and is more confident about its correct predictions. As a visual

validation of the two models, Figs 7 and S2–S5 show the overlay of a plot from each model

with actual results of the underlying population model.

It is conceivable that there are qualitative differences between the two model types that

reflect different ways in which the models learn, yet are not easily described by the statistical

measures calculated in Table 3. For example, based on visual observation, it appears that the

composite model predicts boundaries between success and failure that are more homomorphic

to the underlying model than the suppression rate model. However, the boundaries predicted

by the composite model are often translated somewhat from where the drive transitions from

success to failure in the underlying model. On the other hand, the suppression rate model

appears to better align with the transition from success to failure in the underlying model, but

the predicted boundary is less similar in shape. In other words, if a line between success and

failure in the underlying model could be described by f(x) = ax2+bx+c, the composite model

appears to perform better at finding a and b, while the suppression model appears to perform

better at finding c. This makes intuitive sense: the suppression rate model is being trained on

exactly what we are asking it to predict, so it is lining up with the underlying model very well.

The composite model, on the other hand, is trained on a function that allows the model to

learn more about drive performance, but it is not actually being trained on what it is being

Fig 7. Model comparison, female fertility homing drive without resistance. For this comparison, drive fitness and efficiency were varied while other parameters were

kept at default values. A 1000 by 1000 array of queries was made to both GP models; color indicates model predictions of drive success or failure, as well as confidence.

Black and white square dots show results from simulations using the underlying model. Each square dot denotes the result of twenty simulations performed at each point.

This overlay serves as a visual validation of the GP framework; the actual model behavior in this parameter range (i.e., how drive success depends on model parameters) is

discussed in more detail in the “Selected Model Outcomes” section below. See S2–S5 Figs for similar plots for the other models.

https://doi.org/10.1371/journal.pcbi.1009660.g007
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asked to predict. However, model characteristics of this nature are difficult to precisely mea-

sure, and we did not assess these differences quantitatively.

Overall, the models for the homing drives without resistance appear to be reasonably accu-

rate. The models for the homing drives with resistance as well as for the Y-shredder are some-

what less accurate, apparently due to the relatively smaller area of the parameter space in which

these drives are successful. Yet, even these models are of sufficient quality that sensitivity analy-

ses performed on them should be reasonably reflective of the underlying population model.

III. Sensitivity analyses

We conducted variance-based Sobol sensitivity analyses on each of our GP models. The first

set of analyses is based on samples drawn from across the entire parameter space for each

drive, with the exception that drive fitness and efficiency for the homing drives without resis-

tance were bounded to the range [0.75, 1] since this allows for direct comparison to the models

of those drives with resistance in which those parameters are restricted to that range. The

resulting sensitivity indices of the model parameters are shown in Fig 8. The second order sen-

sitivity indices for this analysis are shown in S6–S10 Figs.

These sensitivity analyses confirm our presuppositions that drive fitness and efficiency are

key parameters for each of the three drives. Resistance also has a substantial effect on the

model. In the female fertility homing drive modeled with resistance, the resistance parameter

dominates all other parameters. Interestingly, the simulation of resistance also has a large

impact on the model for the viability homing drive. However, the parameter itself does not

appear to contribute much to the variance of the outcome. Instead, the relative importance of

the drive efficiency parameter appears to have increased, with the importance of all other

parameters reduced (see the Discussion for an analysis of this result).

It appears that the different types of drives respond differently to demographic parameters

as well. The homing drives were more responsive to survival rate than any other demographic

parameter. Yet, this parameter seems to be of low importance for the Y-shredder. Interaction

distance was found to be an important parameter for the Y-shredder but had very little effect

on the homing drives. Average dispersal was also a somewhat important parameter in the Y-

shredder analysis, while having only small effects in the other models. Most of the models were

at least somewhat responsive to litter size. Migrant frequency has the largest effect on the

female fertility homing drive. Island area affects the female fertility homing drive substantially

when resistance is simulated, likely due to the larger number of individuals in which resistance

alleles could be generated.

The zero-results also provide insight into the system. None of these drives are considered to

be frequency-dependent, and the models agree: across the board, release percentage has little

to no effect, despite the fact that this parameter ranged from only 1% of the population up to

50% of the population.

The adult dispersal speed multiplier was also found to have essentially no impact on the

outcome. In our population model, individuals who are selected as migrants first move to

a new location and then experience density dependent mortality. From these sensitivity analy-

ses, we can therefore surmise that it is the latter of these two processes that usually has the

greater impact on the model. Each time step, both migrants and newborns are dispersed

according to the average dispersal parameter. The migrant frequency ranges from 0% to 50%,

while the litter size varies from 2 to 8, meaning an average of 100% to 400% of the population

size. Thus, at any given moment in the simulation, the vast majority of migration in the system

can be attributed to newborns, leaving the fact that migrants can move further distances less

important.
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Given the critical importance of drive efficiency and fitness, we anticipate that any real-

world release will be predicated on the successful construction of a drive with relatively high

efficiency and low fitness costs. If this can be achieved, it will become important to determine

which other parameters become the most important factors in determining the ultimate out-

come of the release, as these parameters may be of only middling importance elsewhere in the

parameter space. To study this question, we performed a second set of sensitivity analyses in a

subspace of the full parameter space where drive fitness and efficiency were set to be equal and

Fig 8. Sobol sensitivity analysis. “First order effects” describe the effects of varying a single parameter. “Total effects” include the first order effects of the parameter, as

well as potential synergistic interactions between that parameter and one or more other parameters. Analyses of drive models without resistance sampled 24 million

points from the parameter space. Analyses on drive models with resistance sampled 28 million points. These analyses are from the models trained on the suppression rate

due to their somewhat better accuracy. Analyses of the composite model were similar.

https://doi.org/10.1371/journal.pcbi.1009660.g008

PLOS COMPUTATIONAL BIOLOGY Modeling CRISPR gene drives for suppression of invasive rodents using machine learning

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009660 December 29, 2021 22 / 37

https://doi.org/10.1371/journal.pcbi.1009660.g008
https://doi.org/10.1371/journal.pcbi.1009660


fixed at 99% for the Y-shredder, 97% for the viability targeting homing drive, and 90% for the

female fertility targeting homing drive (Fig 9). These levels were chosen because they resulted

in eradication success in the majority of cases when other parameters are at default levels, and

are likely around the minimum that a “release candidate” would need to be able to completely

suppress a population without other control measures, though not with much leeway for

reducing efficiency any further. For purposes of this set of analyses, models without resistance

were used, due to the superior accuracy of those models.

The most important parameters in these analyses tend to be the same ones that were impor-

tant across the entire parameter space (with the obvious absence of the fixed parameters).

However, the sensitivity indices of the remaining parameters are higher than in the analysis of

the entire parameter space because these parameters now drive the entire variation of the out-

put. In the sensitivity analysis of the Y-shredder with fixed fitness and efficiency, the first-

order effect indices now account for a much greater proportion of the overall variation. This is

because most of the impact caused by spatial parameters (such as interaction distance, average

dispersal, island size, and population density) in the sensitivity analysis of the full parameter

space are described by second order synergistic effects between those parameters and drive

efficiency (see S10 Fig).

IV. Selected model outcomes

While sensitivity analysis is a powerful tool for understanding the relative importance of the

input parameters, it does not actually offer an understanding of the nature of the interaction

between any given parameter and the output space. We therefore also performed a set of more

traditional analyses wherein we varied two or three parameters at a time, with the parameters

we chose to vary being informed by the results of our sensitivity analyses. The composite GP

models were used for these analyses since those models tend to have higher confidence in their

Fig 9. Sobol sensitivity analysis with fixed fitness and efficiency. For the female fertility homing drive, fitness and efficiency were both fixed at 90%. For the viability

homing drive, fitness and efficiency were both fixed at 97%. For the Y-shredder, fitness and efficiency were both fixed at 99%. The models without resistance were used.

“First order effects” describe the effects of varying a single parameter. “Total effects” include the first order effects of the parameter, as well as potential synergistic

interactions between that parameter and one or more other parameters.

https://doi.org/10.1371/journal.pcbi.1009660.g009
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correct predictions. Unless assessing a resistance parameter, models trained without resistance

were used, due to the higher accuracy of those models.

As expected, drive fitness and efficiency are key parameters for all of the drives. An analysis

wherein fitness and efficiency were varied while other parameters were kept at default values

shows that if these two drive characteristics are not sufficiently high, the drive cannot succeed

(Fig 10). This analysis also highlights the substantially larger area of success for the homing

drive with a female fertility target as compared to the homing drive with a viability target,

which in turn has a substantially larger area of success than the Y-shredder.

Notably, it appears that if the homing drive with a female fertility target has a low efficiency,

the drive actually performs better if it has a moderate fitness cost than if it has either a high or

low fitness cost (this phenomenon was present in the underlying population model, see Fig 7).

The root cause of this unexpected result is that in our population model, drive fitness is imple-

mented as a survival rate multiplier that is applied every time step and which is equal for both

drive homozygotes and drive heterozygotes. Even when the drive has less than 100% efficiency,

the drive is still able to quickly propagate through the population. However, after the popula-

tion consists entirely of drive carriers (i.e., individuals that have at least one copy of the drive),

there are still many possible pairings that yield fertile offspring. In the absence of a drive fitness

cost, this results in the population declining to a new, lower equilibrium size. When the drive

has a fitness cost, this cost acts to remove wild-type alleles from the population in addition to

drive alleles, providing additional suppressive power. Notably, this phenomenon is substan-

tially decreased for drives with a higher rate of resistance formation.

Litter size and migrant frequency also appeared to be important parameters for all of the

drives, especially in the sensitivity analyses wherein drive fitness and efficiency were fixed. We

thus assessed the effects of varying these two parameters while similarly fixing drive fitness and

efficiency (Fig 11). We found that the drive performs better in populations with a higher fre-

quency of migrants. Smaller average litters enabled greater drive success in the homing drive

with a viability target and the Y-shredder but did not substantially affect the homing drive

with a female fertility target with these parameters. Litter size has a larger effect on the outcome

of the female fertility homing drive in other areas of the parameter space (S11 Fig).

Fig 10. Comparison of the three drives with varying fitness and efficiency. Other parameters were fixed at default values. For each panel, a 1000 by 1000 array of

queries was made to the GP model for that drive.

https://doi.org/10.1371/journal.pcbi.1009660.g010
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In the two homing drives, the third parameter with a high sensitivity index is survival rate.

In order to understand the effects of this parameter, we analyzed the drive fitness and effi-

ciency required for a successful drive while varying the survival rate (Figs 12 and S12). This

analysis suggests that a population with a higher mortality rate could be suppressed by a gene

drive with a much lower fitness and efficiency. The homing drive with a viability target has a

substantially smaller area of success.

In the Y-shredder model, interaction distance and average dispersal distance stand out as

important parameters, in contrast to the other models. We varied these two parameters with

drive fitness and efficiency fixed at 0.99, matching the sensitivity analysis with those parame-

ters fixed (Fig 13). As expected, shorter interaction distances enable the drive to succeed, likely

Fig 11. Comparison of the three drives with varying litter size and migrant frequency. For the female fertility homing drive, fitness and efficiency were both fixed at

90%. For the viability homing drive, fitness and efficiency were both fixed at 97%. For the Y-shredder, fitness and efficiency were both fixed at 99%. The models without

resistance were used.

https://doi.org/10.1371/journal.pcbi.1009660.g011

Fig 12. Female fertility homing drive with varying fitness, efficiency, and survival rate. Other parameters were fixed at default values.

https://doi.org/10.1371/journal.pcbi.1009660.g012
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because females find it increasingly difficult to find mates once the drive has reached a high

frequency. A lower average dispersal distance also helps the drive succeed. When individuals

in the population tend to move around farther, areas where the drive is locally succeeding can

potentially be disrupted by males migrating from areas where the drive is not present at as

high a frequency, resulting in the drive failing to suppress the population.

Resistance, when it was modeled, also had a large impact on the models for the homing

drives. We compared the performance of the two homing drives with and without resistance

and found that the area of drive success of both drives shrinks rapidly in response to resistance

(Fig 14).

Any number of two-factor-at-a-time analyses can be conducted using these meta-models.

The code to generate heatmaps for any other parameter pairs, as well as animated heatmaps

(wherein a third factor is also varied) using fully pre-trained models is available online at

https://github.com/MesserLab/GeneDriveForSuppressionOfInvasiveRodents.

Discussion

Population model

In this study, we developed a simulation model of a spatially continuous rat population to

examine the ability of different types of suppression gene drives to eliminate such a population.

Our model incorporates several features intended to increase the ecological realism of the sim-

ulated rat population, and which could affect the dynamics of gene drive spread in important

ways. These features include local competition and mate choice, migration of offspring and

migrant adults, and overlapping generations. By training a GP as a meta-model for our simula-

tion model, we were able to conduct a comprehensive sensitivity analysis to assess the relative

importance of the various model parameters in determining the outcome of a drive release.

We found that drive efficiency, fitness cost, and resistance rates were the most important fac-

tors in determining the outcome of a drive release, though several of the demographic parame-

ters could also tip the scales between success and failure.

Fig 13. Y-shredder with varying interaction distance and average dispersal. Drive fitness and efficiency were both

fixed at 99%. Other parameters were fixed at default values.

https://doi.org/10.1371/journal.pcbi.1009660.g013
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Our findings can help us develop strategies for improving the likelihood of successful popu-

lation elimination. For example, our analysis revealed that any parameter choices that increase

the mortality rate within the population also make it more likely that the drive will succeed.

This suggests the possibility that the success of a drive could benefit greatly from the simulta-

neous application of traditional control measures, even if those measures are applied indis-

criminately and have the possibility of eliminating drive carriers in addition to wild-type

individuals [91,92]. To perform a cursory but explicit investigation of this possibility, we

implemented a basic “traditional control rate” add-on parameter to our default population

model. Each time step, a percentage of the population is eliminated according to this rate.

Without a drive, upwards of 50% of the population must be removed in this way each time

step in order to fully eliminate the population. Using a homing drive with a female fertility tar-

get with no fitness cost and a drive efficiency of 80%, population eradication can be achieved

with an accompanying traditional control rate of 5%; the same drive with 70% efficiency can

eliminate the population with a traditional control rate of 15% (without traditional control,

such a drive required an efficiency of about 86% to reliably suppress the population). This

Fig 14. Comparison of the two homing drives with varying drive fitness, efficiency, and resistance parameters.

Survival rate was set to 0.8, and other parameters were fixed at default values.

https://doi.org/10.1371/journal.pcbi.1009660.g014
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combined control strategy may prove to be an enabling factor in situations where neither strat-

egy alone is sufficient.

Our model makes several abstractions that may be worth further consideration. For exam-

ple, migration is modeled rather simplistically: individuals have a pre-defined chance to move

in a random direction through a homogenous space. The odds of an individual migrating are

not related to any prevailing conditions, and individuals do not necessarily end up in more

favorable conditions than those they left. A great deal of complexity could be added to this sys-

tem. Individuals might be given a higher chance to migrate when experiencing overcrowding

or when they are unable to find mates. It would also seem more likely that individuals do not

simply move to arbitrary destinations, but rather, tend to settle in areas where there are suffi-

cient resources and potential mates available. The implementation of such resource-aware

migratory behavior could change the dynamics and outcome of a simulated gene drive release.

Reproductive behavior could also be simulated in greater detail. In our model, each female

reproduces during every time step. Yet, rats in the wild reproduce at a variable rate depending

on the time of year and the amount of resources available. There was also no limit on the num-

ber of females that each male can reproduce with. In a healthy population at equilibrium, this

may be a reasonable abstraction, but it might be inaccurate in our simulations of the Y-shred-

der gene drive. With an efficiency of 96% and otherwise default parameters, the Y-shredder

does not reduce the size of the population at all, despite eventually reaching fixation. This

means that, although the sex ratio of the population averages about one male to 50 females, the

population size remains stable. As much as they may be a strongly r-selected species, it is

unclear if male rats in wild populations would be capable of such feats of fertility.

Another abstraction in our model was a simplified version of gene drive dynamics. Future

studies could implement a more advanced framework, including more detailed treatment of

Cas9 cleavage and resistance sources, and multiplexed gRNA targets [45]. Additionally, while

the three drives we considered in this study can rapidly spread in a population, they are all

self-sustaining drives and could thus easily spread into non-target populations even under low

rates of migration. Threshold-dependent drives such as CRISPR-based toxin-antidote systems

[38,93] or tethered drives [94,95] have been proposed as a potential solution to this problem,

and require much higher rates of migration in order to invade and spread into a non-target

population. It may be interesting for future studies to extend our model to such “confineable”

gene drive strategies.

Gaussian process meta-model

The use of a GP model as an efficient and accurate surrogate model allowed us to conduct a

comprehensive exploration of the parameter space of our underlying simulation model, which

would have been prohibitively computationally expensive to perform on the simulation model

directly. This means that future studies using this technique can use increasingly detailed sim-

ulation models without fear of long runtimes.

On the other hand, a GP model is only an approximator of the underlying model, and there

may be situations when this is undesirable. For example, if an actual release candidate for a

suppression gene drive were engineered, it may be preferable to create an extremely detailed

simulation model where drive and species demographic characteristics are bounded to narrow

intervals based on a careful analysis of the candidate drive and the targeted population. Such a

model might then be most suitably analyzed without any approximation layer as it would

require only a limited number of (albeit lengthy) evaluations to assess.

In the current study, the GP models we developed provide insights into the requirements

for a gene drive to successfully eliminate an invasive rat population in a wide variety of
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demographic contexts. This type of analysis could guide the engineering of gene drive systems

by informing scientists of the minimum thresholds that a successful drive candidate must

meet. However, this represents only the most basic application of a meta-model. A GP model

can be trained on any output of the underlying model (or indeed, all of them), rather than just

being used to predict whether or not suppression will occur. Utilizing additional outputs from

the underlying model could enable a meta-model to answer many more questions about the

system. For example, spatial distribution statistics could be gathered from each simulation [37]

so that a meta-model is able to detect the conditions under which chasing occurs within the

system. These statistics could also be combined with a suite of other model outputs in order to

allow a complete mapping of all possible modes of drive failure and success.

Numerous changes could be made to the methods used to create our GP models that may

result in even greater accuracy. To begin with, the meta-model framework was not altered as

additional adaptive datapoints were added to the training set. For example, we elected to use

the Matérn kernel after experimentation found it to give the best results with the initial train-

ing sets which consisted of only 1000 points. However, our final training set is much less

sparse, and the models might now perform better with different kernels. We found that the

Matérn kernel still outperforms the frequently used radial basis function kernel, but our testing

of alternative kernels for the final models was not exhaustive.

Next, our training method was model agnostic. Our initial training set consisted of points

from a Latin hypercube distribution, which is not necessarily the best choice for providing the

model with the clearest understanding of which input factors contribute to variance in the out-

put. Adaptively sampled points did a good job of improving the model, but improvements to

the method of selecting new points could result in model accuracy improving more rapidly

and to a greater degree. We anticipate that refinements to training techniques could provide

substantial increases in accuracy in future studies.

Finally, the training process for each of our GP models was entirely separate. Although

gene drive systems can behave very differently from one another, it might be reasonable to

start with an assumption that parameters behave similarly across drives, and to proceed to

learn the differences between systems from that starting point. A highly accurate GP model

(such as our model for the homing drive with a female fertility target) could be used as a prior

for models of other drives. Doing so would likely boost the accuracy of models created for

drives with very small areas of success, which tend to have trouble identifying these areas of

success to begin with, and thus tend to suffer from a higher incidence of false negatives. The

strategy of using other models as a prior distribution may be even more appropriate in the

context of modeling large families of similar drives, such as toxin-antidote systems [38,93,96].

Sensitivity analysis

The rapid evaluation speed of the GP meta-models unlocks the ability to conduct variance-

based sensitivity analyses of the system. Performing this type of analysis on our population

model directly would require either vast computing resources or an impractical amount of

time.

Sensitivity analysis can provide a more complete understanding of parameter importance

and parameter interactions than traditional analyses. In an analysis wherein only two or three

parameters are varied at a time, it can be difficult to decide which parameters to select. Even

when a parameter is included in such an analysis, the same parameter might behave

completely differently in other parts of the parameter space. For example, in the analysis in Fig

11, litter size does not seem to have much impact on the outcome of the homing drive target-

ing a female fertility gene. However, as indicated by the sensitivity analysis for that drive, litter
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size is in fact important in other parts of the parameter space, as confirmed by a separate analy-

sis (S11 Fig). We may have missed the importance of this parameter had we just performed the

analysis in Fig 11.

Nevertheless, the sensitivity analyses we present here have a few limitations. First, since the

sensitivity analyses were performed on the meta-models, they should only be relied on to the

extent that those models are accurate representations of the underlying population model in

the first place. The small confidence intervals from the plots should therefore be taken only as

a starting point, with the actual confidence of the entire analysis being marginally worse for

the homing drives without resistance, and moderately worse for the other models.

Next, while a sensitivity analysis can be performed on a black-box model, the results of the

analysis are best understood in a light shed by an understanding of the implementation of the

model. For instance, both homing drives, when modeled with resistance, displayed fairly little

sensitivity to the r1 resistance rate. However, this does not mean that r1 resistance is less dis-

ruptive to drive performance than r2 resistance. The r1 resistance rate is implemented as a rel-
ative rate: the formation of r1 alleles depends on both that rate as well as on the overall

resistance rate. This implementation causes the sensitivity index of the r1 parameter to be

bounded by the sensitivity index of the overall resistance parameter. Further, the conversion

rate of the drive is also partially dependent on the overall resistance rate parameter, since drive

conversion cannot occur if a resistance allele forms first. This interaction increases the sensitiv-

ity of the model to changes in the overall resistance parameter. Awareness of these implemen-

tation choices suggests that r1 resistance is a more important consideration for these drives

than the sensitivity indices at first indicate.

Finally, it should be noted that the sensitivity indices show the contributions of the parame-

ters to variance in the output, which is not quite the same as the degree to which the parame-

ters affect the drive. For example, the sensitivity analyses indicate that resistance is an

important parameter for the homing drive with a fertility target, but it is not as important for

the drive with a viability target. This seems to suggest that the homing drive with a viability tar-

get is somehow a more resistance-tolerant system. Yet, the analysis in Fig 14 indicates that this

is not the case. The reason for this seeming contradiction is that, while resistance has a great

deal of effect on the drive, the drive has a relatively smaller area of success in the first place,

meaning resistance has a much smaller absolute effect on the model. In the panel of Fig 14

showing the female fertility targeting homing drive without resistance, success is predicted in

70% of the depicted area; for the viability targeting drive, success is predicted in only about

10% of the depicted area (these percentages closely match those found in the Latin hypercube

sampling of the entire n-dimensional volume; see S1 Table). In the lower panels with resis-

tance, these areas shrink to 45% and 1%, respectively. In this case, resistance has a larger rela-

tive impact on the viability targeting drive, but because of the relatively smaller area of success

for that drive, it has a smaller impact on the model in terms of the absolute number of predic-

tions that change from success to failure because of resistance.

The sensitivity analysis that includes resistance indicates that drive efficiency is far and

away the largest contributor to variance in the model, not because the drive is especially toler-

ant of resistance, but because even a small amount of resistance can only be overcome by a

drive with a very high efficiency. Thus, while the sensitivity indices of the resistance parame-

ters are not large, the mere inclusion of those parameters in the model represents a large

change in the dynamics of the system. The same is likely true of the spatial parameters: while

many of these parameters have relatively low sensitivity indices, it is likely that the mere inclu-

sion of spatial factors causes a paradigmatic shift in the outcome space of the model as com-

pared to what might be expected of a panmictic model.
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Conclusion

Our model shows that a gene drive with a sufficiently high efficiency and a low fitness cost

should be capable of eliminating island populations of invasive rodents under a variety of

demographic assumptions, so long as resistance can be kept to minimal levels. As gene drive

technology continues to develop, modeling approaches must be developed concurrently so

that we can accurately predict the outcome of a drive release before any real-world application

of the technology. The machine learning framework we present herein allows efficient and

exhaustive analysis of population models, even models that are difficult to evaluate, which will

in turn allow the development of models that make increasingly few abstractions. More gener-

ally, this technique offers great promise for modeling gene drive as well as other complex evo-

lutionary systems.

Supporting information

S1 Fig. Gaussian Process model quality. Precision and recall are shown for each of the Gauss-

ian process models used in this study. Each model was evaluated against the Latin Hypercube

test set prepared from the modeled drive.

(TIF)

S2 Fig. Model comparison, female fertility homing drive with resistance. Resistance was set

to 0.01 and relative R1 resistance rate was set to 0.001. Other parameters are fixed at default

values. Black, gray, or white square dots show the results from actual simulations, each denot-

ing the result of twenty simulations.

(TIF)

S3 Fig. Model comparison, viability homing drive without resistance. Survival rate was set

to 0.8, and other parameters were fixed at default values. Black, gray, or white square dots

show the results from actual simulations, each denoting the result of twenty simulations.

(TIF)

S4 Fig. Model comparison, viability homing drive with resistance. Resistance was set to

0.01, relative R1 resistance rate was set to 0.001, and survival rate was set to 0.8. Other parame-

ters were fixed at default values. Black, gray, or white square dots show the results from actual

simulations, each denoting the result of twenty simulations.

(TIF)

S5 Fig. Model comparison, Y-shredder. Survival rate was set to 0.8, and other parameters

were fixed at default values. Black, gray, or white square dots show the results from actual sim-

ulations, each denoting the result of twenty simulations.

(TIF)

S6 Fig. Second order effects for the homing drive targeting a female fertility gene, modeled

without resistance. Second order effects describe the pairwise synergies of two parameters.

Only the 12 largest effects are shown.

(TIF)

S7 Fig. Second order effects for the homing drive targeting a female fertility gene, modeled

with resistance. Second order effects describe the pairwise synergies of two parameters. Only

the 12 largest effects are shown.

(TIF)

S8 Fig. Second order effects for the homing drive with a viability target, modeled without

resistance. Second order effects describe the pairwise synergies of two parameters. Only the 12
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largest effects are shown.

(TIF)

S9 Fig. Second order effects for the homing drive with a viability target, modeled with

resistance. Second order effects describe the pairwise synergies of two parameters. Only the 12

largest effects are shown.

(TIF)

S10 Fig. Second order effects for the Y-shredder drive. Second order effects describe the

pairwise synergies of two parameters. Only the 12 largest effects are shown.

(TIF)

S11 Fig. Female fertility homing drive with varying litter size and drive efficiency. Other

parameters are fixed at default values. An initial analysis (in Fig 11) suggested that litter size

was not important for this drive; however, this analysis confirms that litter size can make

the difference between success and failure of the drive, as indicated by sensitivity analyses

(Figs 8 and 9).

(TIF)

S12 Fig. Viability homing drive with varying fitness, efficiency, and survival rate. Other

parameters are fixed at default values.

(TIF)

S1 Table. Additional Model Comparisons. The GP model for the female fertility homing

drive including resistance was also tested against the test set prepared for the model for the

female fertility homing drive without resistance. A similar test was performed on the model

for the viability homing drive including resistance. The range for the drive fitness and effi-

ciency parameters is [0.75, 1] in the models with resistance and [0.5, 1] in the models without

resistance. Thus, this test was performed using only the subset of the test set where fitness and

efficiency were in the range [0.75, 1]. For comparison purposes, the models without resistance

were tested against this subset of the testing sets as well, and the results are included above. It

appears that in three out of four cases, the model with resistance performs very nearly as well,

despite having trained on a parameter space that is two dimensions larger. In the case of the

composite model for the viability homing drive with resistance, the model quality reduction is

larger.

(XLSX)
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