2,953 research outputs found

    Real-time simulation model of the HL-20 lifting body

    Get PDF
    A proposed manned spacecraft design, designated the HL-20, has been under investigation at Langley Research Center. Included in that investigation are flight control design and flying qualities studies utilizing a man-in-the-loop real-time simulator. This report documents the current real-time simulation model of the HL-20 lifting body vehicle, known as version 2.0, presently in use at NASA Langley Research Center. Included are data on vehicle aerodynamics, inertias, geometries, guidance and control laws, and cockpit displays and controllers. In addition, trim case and dynamic check case data is provided. The intent of this document is to provide the reader with sufficient information to develop and validate an equivalent simulation of the HL-20 for use in real-time or analytical studies

    Exact 1-D Model for Coherent Synchrotron Radiation with Shielding and Bunch Compression

    Full text link
    Coherent Synchrotron Radiation has been studied effectively using a 1-dimensional model for the charge distribution in the realm of small angle approximations and high energies. Here we use Jefimenko's form of Maxwell's equations, without such approximations, to calculate the exact wake-fields due to this effect in multiple bends and drifts. It has been shown before that the influence of a drift can propagate well into a subsequent bend. We show, for reasonable parameters, that the influence of a previous bend can also propagate well into a subsequent bend, and that this is especially important at the beginning of a bend. Shielding by conducting parallel plates is simulated using the image charge method. We extend the formalism to situations with compressing and decompressing distributions, and conclude that simpler approximations to bunch compression usually overestimates the effect. Additionally, an exact formula for the coherent power radiated by a Gaussian bunch is derived by considering the coherent synchrotron radiation spectrum, and is used to check the accuracy of wake-field calculations

    Extended 1D Method for Coherent Synchrotron Radiation including Shielding

    Full text link
    Coherent Synchrotron Radiation can severely limit the performance of accelerators designed for high brightness and short bunch length. Examples include light sources based on ERLs or FELs, and bunch compressors for linear colliders. In order to better simulate Coherent Synchrotron Radiation, the established 1-dimensional formalism is extended to work at lower energies, at shorter bunch lengths, and for an arbitrary configuration of multiple bends. Wide vacuum chambers are simulated by means of vertical image charges. This formalism has been implemented in the general beam dynamics code "Bmad" and its results are here compared to analytical approximations, to numerical solutions of the Maxwell equations, and to the simulation code "elegant"

    Design and characterization of optical-THz phase-matched traveling-wave photomixers

    Get PDF
    Design and characterization of optical-THz phase-matched traveling-wave photomixers for difference-frequency generation of THz waves are presented. A de-biased coplanar stripline fabricated on low-temperature-grown GaAs is illuminated by two non-collinear laser beams which generate moving interference fringes that are accompanied by THz waves. By tuning the offset angle between the two laser beams, the velocity of the interference fringe can be matched to the phase velocity of the THz wave in the coplanar stripline. The generated THz waves are radiated into free space by the antenna at the termination of the stripline. Enhancement of the output power was clearly observed when the phase-matching condition was satisfied. The output power spectrum has a 3-dB bandwidth of 2 THz and rolls off as ~9 dB/Oct which is determined by the frequency dependent attenuation in the stripline, while the bandwidth of conventional photomixer design has the limitation by the RC time constant due to the electrode capacitance. The device can handle the laser power of over 380 mW, which is 5 times higher than the maximum power handring capability of conventional small area devices. The results show that the traveling-wave photomixers have the potential to surpass small area designs, especially at higher frequencies over I THz, owing to their great thermal dissipation capability and capacitance-free wide bandwidth

    A traveling-wave THz photomixer based on angle-tuned phase matching

    Get PDF
    A traveling-wave THz photomixer based on a free-space optical-THz phase-matching scheme is proposed. A dc-biased coplanar strip line fabricated on low-temperature-grown GaAs serves as the active area of the device, and is illuminated by two noncollinear laser beams which generate interference fringes that are accompanied by THz waves. The device with the laser-power-handling capability over 300 mW and a 3-dB bandwidth of 1.8 THz was experimentally demonstrated. The results show that traveling-wave photomixers have the potential to surpass small-area designs

    Exposure to extremely low frequency electromagnetic fields alters the behaviour, physiology and stress protein levels of desert locusts

    No full text
    Electromagnetic fields (EMFs) are present throughout the modern world and are derived from many man-made sources including overhead transmission lines. The risks of extremely-low frequency (ELF) electromagnetic fields are particularly poorly understood especially at high field strengths as they are rarely encountered at ground level. Flying insects, however, can approach close to high field strength transmission lines prompting the question as to how these high levels of exposure affect behaviour and physiology. Here we utilise the accessible nervous system of the locust to ask how exposure to high levels of ELF EMF impact at multiple levels. We show that exposure to ELF EMFs above 4 mT leads to reduced walking. Moreover, intracellular recordings from an identified motor neuron, the fast extensor tibiae motor neuron, show increased spike latency and a broadening of its spike in exposed animals. In addition, hind leg kick force, produced by stimulating the extensor tibiae muscle, was reduced following exposure, while stress-protein levels (Hsp70) increased. Together these results suggest that ELF EMF exposure has the capacity to cause dramatic effects from behaviour to physiology and protein expression, and this study lays the foundation to explore the ecological significance of these effects in other flying insects

    Automated detection of celiac disease on duodenal biopsy slides: a deep learning approach

    Full text link
    Celiac disease prevalence and diagnosis have increased substantially in recent years. The current gold standard for celiac disease confirmation is visual examination of duodenal mucosal biopsies. An accurate computer-aided biopsy analysis system using deep learning can help pathologists diagnose celiac disease more efficiently. In this study, we trained a deep learning model to detect celiac disease on duodenal biopsy images. Our model uses a state-of-the-art residual convolutional neural network to evaluate patches of duodenal tissue and then aggregates those predictions for whole-slide classification. We tested the model on an independent set of 212 images and evaluated its classification results against reference standards established by pathologists. Our model identified celiac disease, normal tissue, and nonspecific duodenitis with accuracies of 95.3%, 91.0%, and 89.2%, respectively. The area under the receiver operating characteristic curve was greater than 0.95 for all classes. We have developed an automated biopsy analysis system that achieves high performance in detecting celiac disease on biopsy slides. Our system can highlight areas of interest and provide preliminary classification of duodenal biopsies prior to review by pathologists. This technology has great potential for improving the accuracy and efficiency of celiac disease diagnosis.Comment: Accepted in Journal of Pathology Informatic

    Keck Spectroscopy of Three Gravitational Lens Systems Discovered in the JVAS and CLASS Surveys

    Get PDF
    We present spectra of three gravitational lens systems taken with the Low Resolution Imaging Spectrograph on the W. M. Keck Telescopes. All of the systems were discovered in the JVAS and CLASS radio surveys, which were designed to find lenses suitable for measuring H0H_0. Previous spectra of these systems had low signal-to-noise ratios, and only one of the source redshifts was secure. Our observations give unambiguous lens and source redshifts for all of the systems, with (zlz_l, zsz_s) = (0.4060,1.339), (0.5990,1.535) and (0.4144,1.589) for B0712+472, B1030+074 and B1600+434, respectively. The observed image splittings in the systems imply that the masses of the lensing galaxies within their Einstein rings are 5.4×1010\times 10^{10}, 1.2×1011\times 10^{11}, and 6.3\times 10^{10} h^{-1} M_{\sun}. The resulting V-band mass-to-light ratios for B0712+472 and B1030+074, measured inside their Einstein ring radii, are \sim 10h (M/L)_{\sun, V}, slightly higher than values observed in nearby ellipticals. For B1600+434, the mass-to-light ratio is 48h (M/L)_{\sun, V}. This high value can be explained, at least in part, by the prominent dust lane running through the galaxy. Two of the three lens systems show evidence of variability, so monitoring may yield a time delay and thus a measurement of H0H_0.Comment: 8 pages, 5 Postscript Figures, uses aastex. To appear in A.

    Functional Movement Screentm Scores in Collegiate Track and Field Athletes in Relation to Injury Risk and Performance

    Get PDF
    Purpose: The purpose of this study was to examine the relationship between Functional Movement Screentm (FMS) scores, injury rate, and performance in collegiate track and field athletes. Methods: Forty seven male (n=17) and female (n=30) competitive track and field athletes at an NCAA Division I university volunteered for this study. As part of their regular team assessment, the athletes were evaluated on three separate occasions using the FMS tool: in August, one week prior to the start of university organized practice for the fall (T1); in December, one week prior to the end of the fall academic semester (T2); and in March, the week following the conclusion of the indoor competition season (T3). The FMS consists of the performance of seven fundamental movement patterns that are evaluated and scored by a trained professional. For each time point, athletes were divided into two categories based on total FMS score (≤14 and ≥15). Throughout the competitive season, injuries were tracked and categorized as either mild (no loss of practice or competition time) or moderate/severe (loss of practice or competition time). As part of an ongoing injury prevention program, athletes performed generalized corrective exercises for 15 min 2-3 times per week. The performance in the last event of the season (conference meet) was also recorded. Results: Average FMS scores significantly (p\u3c0.05) decreased across the three time points (Mean ± SD, T1: 15.5 ± 2.2, T2: 14.9 ± 1.8, T3: 14.7 ± 1.6) despite that generalized corrective exercises were performed. Analyses of results found no association between FMS scores and likelihood to sustain a moderate/severe injury. Athletes with a score of ≤14 on the FMS at T1 were 3.1 times more likely not to place in the top 8 at the conference meet. 53% of the athletes who had a score of ≥15 at T1 placed in the top 8 at the meet while only 27% of athletes with a score of ≤14 at T1 placed in the top 8 at the meet. Conclusion: FMS scores ≤14 indicate reduced performance ability but not increased likelihood of injury in track and field athletes
    • …
    corecore