29,843 research outputs found

    Nonlinear double Compton scattering in the full quantum regime

    Full text link
    A detailed analysis of the process of two photon emission by an electron scattered from a high-intensity laser pulse is presented. The calculations are performed in the framework of strong-field QED and include exactly the presence of the laser field, described as a plane wave. We investigate the full quantum regime of interaction, where photon recoil plays an essential role in the emission process, and substantially alters the emitted photon spectra as compared to those in previously-studied regimes. We provide a semiclassical explanation for such differences, based on the possibility of assigning a trajectory to the electron in the laser field before and after each quantum photon emission. Our numerical results indicate the feasibility of investigating experimentally the full quantum regime of nonlinear double Compton scattering with already available plasma-based electron accelerator and laser technology.Comment: 5 pages, 3 figure

    Dark energy models toward observational tests and data

    Full text link
    A huge amount of good quality astrophysical data converges towards the picture of a spatially flat universe undergoing the today observed phase of accelerated expansion. This new observational trend is commonly addressed as Precision Cosmology. Despite of the quality of astrophysical surveys, the nature of dark energy dominating the matter-energy content of the universe is still unknown and a lot of different scenarios are viable candidates to explain cosmic acceleration. Methods to test these cosmological models are based on distance measurements and lookback time toward astronomical objects used as standard candles. I discuss the characterizing parameters and constraints of three different classes of dark energy models pointing out the related degeneracy problem which is the signal that more data at low (z= 0- 1), medium (1<z<10) and high (10 <z< 1000) redshift are needed to definitively select realistic models.Comment: 17 pages, 9 figures, Lectures for 42nd Karpacz Winter School of Theoretical Physics: Current Mathematical Topics in Gravitation and Cosmology, Ladek, Poland, 6-11 Feb 200

    Relativistic three-body recombination with the QED vacuum

    Full text link
    Electron-positron pair annihilation into a single photon is studied when a second free electron is present. Focussing on the relativistic regime, we show that the photon emitted in the three-lepton interaction may exhibit distinct angular distributions and polarization properties. Moreover, the process can dominate over two-photon annihilation in relativistic electron-positron plasmas of few-MeV temperature. An analogy with three-body recombination of electrons with ions is drawn.Comment: 5 pages, 4 figure

    Do Spinors Frame-Drag?

    Full text link
    We investigate the effect of the intrinsic spin of a fundamental spinor field on the surrounding spacetime geometry. We show that despite the lack of a rotating stress-energy source (and despite claims to the contrary) the intrinsic spin of a spin-half fermion gives rise to a frame-dragging effect analogous to that of orbital angular momentum, even in Einstein-Hilbert gravity where torsion is constrained to be zero. This resolves a paradox regarding the counter-force needed to restore Newton's third law in the well known spin-orbit interaction. In addition, the frame-dragging effect gives rise to a {\it long-range} gravitationally mediated spin-spin dipole interaction coupling the {\it internal} spins of two sources. We argue that despite the weakness of the interaction, the spin-spin interaction will dominate over the ordinary inverse square Newtonian interaction in any process of sufficiently high-energy for quantum field theoretical effects to be non-negligible.Comment: V2: published version, mostly minor clarifications from V

    Spectroscopy of B_c Mesons in the Relativized Quark Model

    Get PDF
    We calculate the spectrum of the charm-beauty mesons using the relativized quark model. Using the wavefunctions from this model we compute the radiative widths of excited c\bar{b} states. The hadronic transition rates between c\bar{b} states are estimated using the Kuang-Yan approach and are combined with the radiative widths to give estimates of the relative branching ratios. These results are combined with production rates at the Tevatron and the LHC to suggest promising signals for excited B_c states. Our results are compared with other models to gauge the reliability of the predictions and point out differences.Comment: 15 pages, 1 fig. uses revtex4. References adde

    <i>‘What retention’ means to me</i>: the position of the adult learner in student retention

    Get PDF
    Studies of student retention and progression overwhelmingly appear adopt definitions that place the institution, rather than the student, at the centre. Retention is most often conceived in terms of linear and continuous progress between institutionally identified start and end points. This paper reports on research that considered data from 38 in-depth interviews conducted with individuals who had characteristics often associated with non-traditional engagement in higher education who between 2006 and 2010 had studied an ‘Introduction to HE’ module at one distance higher education institution, some of whom had progressed to further study at that institution, some of whom had not. The research deployed a life histories approach to seek a finer grained understanding of how individuals conceptualise their own learning journey and experience, in order to reflect on institutional conceptions of student retention. The findings highlight potential anomalies hidden within institutional retention rates – large proportions of the interview participants who were not ‘retained’ by the institution reported successful progression to and in other learning institutions and environments, both formal and informal. Nearly all described positive perspectives on lifelong learning which were either engendered or improved by the learning undertaken. This attests to the complexity of individuals’ lives and provides clear evidence that institution-centric definitions of retention and progression are insufficient to create truly meaningful understanding of successful individual learning journeys and experiences. It is argued that only through careful consideration of the lived experience of students and a re-conception of measures of retention, will we be able to offer real insight into improving student retention

    The Semiclassical Coulomb Interaction

    Full text link
    The semiclassical Coulomb excitation interaction is at times expressed in the Lorentz gauge in terms of the electromagnetic fields and a contribution from the scalar electric potential. We point out that the potential term can make spurious contributions to excitation cross sections, especially when the the decay of excited states is taken into account. We show that, through an appropriate gauge transformation, the excitation interaction can be expressed in terms of the electromagnetic fields alone.Comment: 12 pages. Phys. Rev. C, Rapid Communication, in pres

    Theory of Interfacial Plasmon-Phonon Scattering in Supported Graphene

    Full text link
    One of the factors limiting electron mobility in supported graphene is remote phonon scattering. We formulate the theory of the coupling between graphene plasmon and substrate surface polar phonon (SPP) modes, and find that it leads to the formation of interfacial plasmon-phonon (IPP) modes, from which the phenomena of dynamic anti-screening and screening of remote phonons emerge. The remote phonon-limited mobilities for SiO2_{2}, HfO2_{2}, h-BN and Al2_{2}O3_{3} substrates are computed using our theory. We find that h-BN yields the highest peak mobility, but in the practically useful high-density range the mobility in HfO2_{2}-supported graphene is high, despite the fact that HfO2_{2} is a high-κ\kappa dielectric with low-frequency modes. Our theory predicts that the strong temperature dependence of the total mobility effectively vanishes at very high carrier concentrations. The effects of polycrystallinity on IPP scattering are also discussed.Comment: 33 pages, 7 figure

    "Quantum Interference with Slits" Revisited

    Full text link
    Marcella [arXiv:quant-ph/0703126] has presented a straightforward technique employing the Dirac formalism to calculate single- and double-slit interference patterns. He claims that no reference is made to classical optics or scattering theory and that his method therefore provides a purely quantum mechanical description of these experiments. He also presents his calculation as if no approximations are employed. We show that he implicitly makes the same approximations found in classical treatments of interference and that no new physics has been introduced. At the same time, some of the quantum mechanical arguments Marcella gives are, at best, misleading.Comment: 11 pages, 3 figure
    • …
    corecore