2,352 research outputs found

    Modeling atmospheric effects of the September 1859 Solar Flare

    Get PDF
    We have modeled atmospheric effects, especially ozone depletion, due to a solar proton event which probably accompanied the extreme magnetic storm of 1-2 September 1859. We use an inferred proton fluence for this event as estimated from nitrate levels in Greenland ice cores. We present results showing production of odd nitrogen compounds and their impact on ozone. We also compute rainout of nitrate in our model and compare to values from ice core data.Comment: Revised version including improved figures; Accepted for publication in Geophys. Res. Lett, chosen to be highlighted by AG

    A Cytotoxic, Co-operative Interaction Between Energy Deprivation and Glutamate Release From System x\u3csub\u3ec\u3c/sub\u3e\u3csup\u3e−\u3c/sup\u3e Mediates Aglycemic Neuronal Cell Death

    Get PDF
    The astrocyte cystine/glutamate antiporter (system xc−) contributes substantially to the excitotoxic neuronal cell death facilitated by glucose deprivation. The purpose of this study was to determine the mechanism by which this occurred. Using pure astrocyte cultures, as well as, mixed cortical cell cultures containing both neurons and astrocytes, we found that neither an enhancement in system xc− expression nor activity underlies the excitotoxic effects of aglycemia. In addition, using three separate bioassays, we demonstrate no change in the ability of glucose-deprived astrocytes—either cultured alone or with neurons—to remove glutamate from the extracellular space. Instead, we demonstrate that glucose-deprived cultures are 2 to 3 times more sensitive to the killing effects of glutamate or N-methyl-D-aspartate when compared with their glucose-containing controls. Hence, our results are consistent with the weak excitotoxic hypothesis such that a bioenergetic deficiency, which is measureable in our mixed but not astrocyte cultures, allows normally innocuous concentrations of glutamate to become excitotoxic. Adding to the burgeoning literature detailing the contribution of astrocytes to neuronal injury, we conclude that under our experimental paradigm, a cytotoxic, co-operative interaction between energy deprivation and glutamate release from astrocyte system xc− mediates aglycemic neuronal cell death

    Discussion quality diffuses in the digital public square

    Full text link
    Studies of online social influence have demonstrated that friends have important effects on many types of behavior in a wide variety of settings. However, we know much less about how influence works among relative strangers in digital public squares, despite important conversations happening in such spaces. We present the results of a study on large public Facebook pages where we randomly used two different methods--most recent and social feedback--to order comments on posts. We find that the social feedback condition results in higher quality viewed comments and response comments. After measuring the average quality of comments written by users before the study, we find that social feedback has a positive effect on response quality for both low and high quality commenters. We draw on a theoretical framework of social norms to explain this empirical result. In order to examine the influence mechanism further, we measure the similarity between comments viewed and written during the study, finding that similarity increases for the highest quality contributors under the social feedback condition. This suggests that, in addition to norms, some individuals may respond with increased relevance to high-quality comments.Comment: 10 pages, 6 figures, 2 table

    Ethical and compliance-competence evaluation: a key element of sound corporate governance

    Get PDF
    Motivated by the ongoing post-Enron refocusing on corporate governance and the shift by the Financial Services Authority (FSA) in the UK to promoting compliance- competence within the financial services sector, this paper demonstrates how template analysis can be used as a tool for evaluating compliance-competence. Focusing on the ethical dimension of compliance-competence, we illustrate how this can be subjectively appraised. We propose that this evaluation technique could be utilised as a starting point in informing senior management of corporate governance issues and be used to monitor and demonstrate key compliance and ethical aspects of an institution to external stakeholders and regulators

    Experimental X-ray Stress Analysis Procedures for Ultra High Strength Materials

    Get PDF
    X-ray stress analysis procedures for accurate measurement of elastic strain in high strength steel

    Predicted rocket and shuttle effects on stratospheric ozone

    Get PDF
    The major chemical effluents of either solid- or liquid-fueled rockets that can potentially perturb stratospheric ozone include chlorine compounds (HCl), nitrogen compounds (NO(x)), and hydrogen compounds (H2 and H2O). Radicals (Cl, ClO, H, OH, HO2, NO, and NO2) formed directly or indirectly from rocket exhaust can cause the catalytic destruction of ozone. Other exhaust compounds that could presumably lead to ozone destruction either by direct reaction with ozone or by providing a surface for heterogeneous processes include the particulates Al2O3, ice, and soot. These topics are discussed in terms of the possible effects of rocket exhausts on stratospheric ozone

    A Lagrangian View of Stratospheric Trace Gas Distributions

    Get PDF
    As a result of photochemistry, some relationship between the stratospheric age-of-air and the amount of tracer contained within an air sample is expected. The existence of such a relationship allows inferences about transport history to be made from observations of chemical tracers. This paper lays down the conceptual foundations for the relationship between age and tracer amount, developed within a Lagrangian framework. In general, the photochemical loss depends not only on the age of the parcel but also on its path. We show that under the "average path approximation" that the path variations are less important than parcel age. The average path approximation then allows us to develop a formal relationship between the age spectrum and the tracer spectrum. Using the relation between the tracer and age spectra, tracer-tracer correlations can be interpreted as resulting from mixing which connects parts of the single path photochemistry curve, which is formed purely from the action of photochemistry on an irreducible parcel. This geometric interpretation of mixing gives rise to constraints on trace gas correlations, and explains why some observations are do not fall on rapid mixing curves. This effect is seen in the ATMOS observations

    A Model Study of the Impact of Source Gas Changes on the Stratosphere for 1850-2100

    Get PDF
    The long term stratospheric impacts due to emissions of CO2, CH4, N2O, and ozone depleting substances (ODSs) are investigated using an updated version of the Goddard two-dimensional (2D) model. Perturbation simulations with the ODSs, CO2, CH4, and N2O varied individually are performed to isolate the relative roles of these gases in driving stratospheric changes over the 1850-2100 time period. We also show comparisons with observations and the God- 40 dard Earth Observing System chemistry-climate model simulations for the time period 1970-2100 to illustrate that the 2D model captures the basic processes responsible for longterm stratospheric change. The 2D simulations indicate that prior to 1940, the 45 ozone increases due to CO2 and CH4 loading outpace the ozone losses due to increasing N2O and carbon tetrachloride (CCl4) emissions, so that ozone reaches a broad maximum during the 1920s-1930s. This preceeds the significant ozone depletion during approx. 1960-2050 driven by the ODS loading. During the latter half of the 21st century as ODS emissions diminish, CO2, N2O, and CH4 loading will all have significant impacts on global total ozone based on the IPCC AIB (medium) scenario, with CO2 having the largest individual effect. Sensitivity tests illustrate that due to the strong chemical interaction between methane and chlorine, the CH4 impact on total ozone becomes significantly more positive with larger ODS loading. The model simulations also show that changes in stratospheric temperature, Brewer-Dobson circulation (BDC), and age of air during 1850-2100 are controlled mainly by the CO2 and ODS loading. The simulated acceleration of the BDC causes the age of air to decrease by approx. 1 year from 1860-2100. The corresponding photochemical lifetimes of N2O, CFCl3, CF2Cl2, and CCl4 decrease by 11-13% during 1960-2100 due to the acceleration of the BDC, with much smaller lifetime changes 4%) caused by changes in the photochemical loss rates
    • …
    corecore