86 research outputs found

    Analogies between self-duality and stealth matter source

    Get PDF
    We consider the problem of a self-interacting scalar field nonminimally coupled to the three-dimensional BTZ metric such that its energy-momentum tensor evaluated on the BTZ metric vanishes. We prove that this system is equivalent to a self-dual system composed by a set of two first-order equations. The self-dual point is achieved by fixing one of the coupling constant of the potential in terms of the nonminimal coupling parameter. At the self-dual point and up to some boundary terms, the matter action evaluated on the BTZ metric is bounded below and above. These two bounds are saturated simultaneously yielding to a vanishing action for configurations satisfying the set of self-dual first-order equations.Comment: 6 pages. To be published in Jour. Phys.

    Exotic galilean symmetry and the Hall effect

    Get PDF
    The ``Laughlin'' picture of the Fractional Quantum Hall effect can be derived using the ``exotic'' model based on the two-fold centrally-extended planar Galilei group. When coupled to a planar magnetic field of critical strength determined by the extension parameters, the system becomes singular, and ``Faddeev-Jackiw'' reduction yields the ``Chern-Simons'' mechanics of Dunne, Jackiw, and Trugenberger. The reduced system moves according to the Hall law.Comment: Talk given by P. A. Horvathy at the Joint APCTP- Nankai Symposium. Tianjin (China), Oct.2001. To appear in the Proceedings, to be published by Int. Journ. Mod. Phys. B. 7 pages, LaTex, IJMPB format. no figure

    Non-Abelian Chern-Simons Particles and their Quantization

    Full text link
    A many--body Schr\"odinger equation for non--Abelian Chern--Simons particles is obtained from both point--particle and field--theoretic pictures. We present a particle Lagrangian and a field theoretic Lagrange density, and discuss their properties. Both are quantized by the symplectic method of Hamiltonian reduction. An NN--body Schr\"odinger equation for the particles is obtained from both starting points. It is shown that the resulting interaction between particles can be replaced by non--trivial boundary conditions. Also, the equation is compared with the one given in the literature.Comment: 18 pages, MIT preprint CTP # 227

    B\"acklund transformation for non-relativistic Chern-Simons vortices

    Full text link
    A B\"acklund transformation yielding the static non-relativistic Chern-Simons vortices of Jackiw and Pi is presented.Comment: 7 pages plain Te

    Extended de Sitter Theory of Two Dimensional Gravitational Forces

    Full text link
    We present a simple unifying gauge theoretical formulation of gravitational theories in two dimensional spacetime. This formulation includes the effects of a novel matter-gravity coupling which leads to an extended de Sitter symmetry algebra on which the gauge theory is based. Contractions of this theory encompass previously studied cases.Comment: 19pp, no figs., CTP 2228, UCONN-93-

    Couplings between Chern-Simons gravities and 2p-branes

    Full text link
    The interaction between Chern-Simons (CS) theories and localized external sources (2p-branes) is analyzed. This interaction generalizes the minimal coupling between a point charge (0-brane) and a gauge connection. The external currents that define the 2p-branes are covariantly constant (D-2p-1)-forms coupled to (2p-1) CS forms. The general expression for the sources --charged with respect to the corresponding gauge algebra-- is presented, focusing on two special cases: 0-branes and (D-3)-branes. In any dimension, 0-branes are constructed as topological defects produced by a surface deficit of (D-2)-sphere in AdS space, and they are not constant curvature spaces for D>3. They correspond to dimensionally continued black holes with negative mass. On the other hand, in the case of CS (super) gravities, the (D-3)-branes are naked conical singularities (topological defects) obtained by identification of points with a Killing vector. In 2+1 dimensions, extremal spinning branes of this type are BPS states. Stable (D-3)-branes are shown to exist also in higher dimensions, as well. Classical field equations are also discussed and in the presence of sources there is a large number of inequivalent and disconnected sectors in solution space.Comment: 29 pages, no figures; version accepted in PRD; extended introduction and several references added; some sections have been reorganized and several minor corrections mad

    Calorons in Weyl Gauge

    Get PDF
    We demonstrate by explicit construction that while the untwisted Harrington-Shepard caloron AÎŒA_\mu is manifestly periodic in Euclidean time, with period ÎČ=1T\beta=\frac{1}{T}, when transformed to the Weyl (A0=0A_0=0) gauge, the caloron gauge field AiA_i is periodic only up to a large gauge transformation, with winding number equal to the caloron's topological charge. This helps clarify the tunneling interpretation of these solutions, and their relation to Chern-Simons numbers and winding numbers.Comment: 10 pages, 10 figures, a sign typo in equation 27 is correcte

    Symmetry Breaking in the Schr\"odinger Representation for Chern-Simons Theories

    Full text link
    This paper discusses the phenomenon of spontaneous symmetry breaking in the Schr\"odinger representation formulation of quantum field theory. The analysis is presented for three-dimensional space-time abelian gauge theories with either Maxwell, Maxwell-Chern-Simons, or pure Chern-Simons terms as the gauge field contribution to the action, each of which leads to a different form of mass generation for the gauge fields.Comment: 16pp, LaTeX , UCONN-94-

    Self-DUal SU(3) Chern-Simons Higgs Systems

    Get PDF
    We explore self-dual Chern-Simons Higgs systems with the local SU(3)SU(3) and global U(1)U(1) symmetries where the matter field lies in the adjoint representation. We show that there are three degenerate vacua of different symmetries and study the unbroken symmetry and particle spectrum in each vacuum. We classify the self-dual configurations into three types and study their properties.Comment: Columbia Preprint CU-TP-635, 19 page

    Casimir Effects in Renormalizable Quantum Field Theories

    Get PDF
    We review the framework we and our collaborators have developed for the study of one-loop quantum corrections to extended field configurations in renormalizable quantum field theories. We work in the continuum, transforming the standard Casimir sum over modes into a sum over bound states and an integral over scattering states weighted by the density of states. We express the density of states in terms of phase shifts, allowing us to extract divergences by identifying Born approximations to the phase shifts with low order Feynman diagrams. Once isolated in Feynman diagrams, the divergences are canceled against standard counterterms. Thus regulated, the Casimir sum is highly convergent and amenable to numerical computation. Our methods have numerous applications to the theory of solitons, membranes, and quantum field theories in strong external fields or subject to boundary conditions.Comment: 27 pp., 11 EPS figures, LaTeX using ijmpa1.sty; email correspondence to R.L. Jaffe ; based on talks presented by the authors at the 5th workshop `QFTEX', Leipzig, September 200
    • 

    corecore