5 research outputs found

    The chromatin remodelling factor ATRX suppresses R-loops in transcribed telomeric repeats

    No full text
    ATRX is a chromatin remodelling factor found at a wide range of tandemly repeated sequences including telomeres (TTAGGG)n. ATRX mutations are found in nearly all tumours that maintain their telomeres via the alternative lengthening of telomere (ALT) pathway, and ATRX is known to suppress this pathway. Here we show that recruitment of ATRX to telomeric repeats depends on repeat number, orientation and, critically, on repeat transcription. Importantly, the transcribed telomeric repeats form RNA-DNA hybrids (Rloops) whose abundance correlates with the recruitment of ATRX. Here we show loss of ATRX is also associated with increased R-loop formation. Our data suggest that the presence of ATRX at telomeres may have a central role in suppressing deleterious DNA secondary structures that form at transcribed telomeric repeats, and this may account for the increased DNA damage, stalling of replication and homology directed repair previously observed upon loss of ATRX function

    Transcription of antisense RNA leading to gene silencing and methylation as a novel cause of human genetic disease.

    No full text
    Nearly all human genetic disorders result from a limited repertoire of mutations in an associated gene or its regulatory elements. We recently described an individual with an inherited form of anemia (alpha-thalassemia) who has a deletion that results in a truncated, widely expressed gene (LUC7L) becoming juxtaposed to a structurally normal alpha-globin gene (HBA2). Although it retains all of its local and remote cis-regulatory elements, expression of HBA2 is silenced and its CpG island becomes completely methylated early during development. Here we show that in the affected individual, in a transgenic model and in differentiating embryonic stem cells, transcription of antisense RNA mediates silencing and methylation of the associated CpG island. These findings identify a new mechanism underlying human genetic disease

    Runx1-mediated hematopoietic stem-cell emergence is controlled by a Gata/Ets/SCL-regulated enhancer

    No full text
    The transcription factor Runx1/AML1 is an important regulator of hematopoiesis and is critically required for the generation of the first definitive hematopoietic stem cells (HSCs) in the major vasculature of the mouse embryo. As a pivotal factor in HSC ontogeny, its transcriptional regulation is of high interest but is largely undefined. In this study, we used a combination of comparative genomics and chromatin analysis to identify a highly conserved 531-bp enhancer located at position + 23.5 in the first intron of the 224-kb mouse Runx1 gene. We show that this enhancer contributes to the early hematopoietic expression of Runx1. Transcription factor binding in vivo and analysis of the mutated enhancer in transient transgenic mouse embryos implicate Gata2 and Ets proteins as critical factors for its function. We also show that the SCL/Lmo2/Ldb-1 complex is recruited to the enhancer in vivo. Importantly, transplantation experiments demonstrate that the intronic Runx1 enhancer targets all definitive HSCs in the mouse embryo, suggesting that it functions as a crucial cis-regulatory element that integrates the Gata, Ets, and SCL transcriptional networks to initiate HSC generation
    corecore