302 research outputs found

    The High Arctic glacial ecosystem: new insights from nutrient budgets

    Get PDF

    A long-term Arctic snow depth record from Abisko, northern Sweden, 1913–2004

    Get PDF
    A newly digitized record of snow depth from the Abisko Scientific Research Station in northern Sweden covers the period 1913-present. Mean snow depths were taken from paper records of measurements made on a profile comprising 10 permanent stakes. This long-term record yields snow depths consistent with two other shorter term Abisko records: measurements made at another 10-stake profile (1974-present) and at a single stake (1956-present). The measurement interval is variable, ranging from daily to monthly, and there are no data for about half Of the winter months in the period 1930-1956. To fill the gaps, we use a simple snowpack model driven by concurrent temperature and precipitation measurements at Abisko. Model snow depths are similar to observed; differences between the two records are comparable to those between profile and single stake measurements. For both model and observed snow depth records, the most statistically significant trend is in winter mean snow depths, amounting to an increase of about 2 cm or 5% of the mean per decade over the whole measurement period, and 10% per decade since the 1930-40s, but all seasonal means of snow depth show positive trends on the longest timescales. However, the start, end, and length of the snow season do not show any statistically significant long-term trends. Finally, the relation between the Arctic Oscillation index and Abisko temperature, precipitation and snow depth is positive and highly significant, with the best correlations for winter

    Sliding of ice past an obstacle at Engabreen, Norway

    Get PDF
    At Engabreen, Norway, an instrumented panel containing a decimetric obstacle was mounted flush with the bed surface beneath 210 m of ice. Simultaneous measurements of normaland shear stresses, ice velocity and temperature were obtained as dirty basal ice flowed past the obstacle. Our measurements were broadly consistent with ice thickness, flow conditions and bedrock topography near the site of the experiment. Ice speed 0.45 m above the bed was about 130 mm d–1, much less than the surface velocity of 800 mm d–1. Average normalstress on the panelwas 1.0–1.6 MPa, smaller than the expected ice overburden pressure. Normal stress was larger and temperature was lower on the stoss side than on the lee side, in accord with flow dynamics and equilibrium thermodynamics. Annualdifferences in normal stresses were correlated with changes in sliding speed and ice-flow direction. These temporal variations may have been caused by changes in ice rheology associated with changes in sediment concentration, water content or both. Temperature and normalstress were generally correlated, except when clasts presumably collided with the panel. Temperature gradients in the obstacle indicated that regelation was negligible, consistent with the obstacle size. Melt rate was about 10% of the sliding speed. Despite high sliding speed, no significant ice/bed separation was observed in the lee of the obstacle. Frictional forces between sediment particles in the ice and the panel, estimated from Hallet\u27s (1981) model, indicated that friction accounted for about 5% of the measured bed-parallel force. This value is uncertain, as friction theories are largely untested. Some of these findings agree with sliding theories, others do not

    "Basal conditions of Kongsvegen at the onset of surge - revealed using seismic vibroseis surveys" in the IASC Workshop on the dynamics and mass budget of Arctic glaciers - Abstracts and program booklet.

    Get PDF
    Kongsvegen is a well-studied surge-type glacier in the Kongsfjord area of northwest Svalbard. Long-term monitoring has shown that the ice surface velocity has been increasing for the past 4 years; presenting a unique opportunity to study the internal ice structure, basal conditions and thermal regime that play a crucial role in initiating glacier surges. In April 2019, three-component seismic vibroseis surveys were conducted at two sites on the glacier, using a small Electrodynamic Vibrator source (ElViS). Site 1 is in the ablation area and site 2 near the equilibrium line, where the greatest increase in ice surface velocity has been observed. Initial analysis indicates the conditions at the two sites are significantly different. At site 1 the ice is around 220 m thick, sitting on a relatively flat and uniform bed, with no clear change in the bed reflection along the profile. There is a horizontally layered sediment package ∼60 m thick underlaying the bed. The ice column shows no internal layering. By contrast at site 2 (Fig. 1), where the ice is around 390 m thick, there is much more complex internal ice structure. Clear internal ice reflections are visible between 150-250 m depth – where we expect a transition from cold to temperate ice. Further reflections in the 100 m above the bed indicate there could be shearing or sediment entrainment in this area. Below the bed, cross-cutting layers are clearly visible and the bed reflection itself shows changing reflection polarity – suggesting water or very wet sediment is present in some areas. This suggests ice movement by basal sliding and shearing is likely

    Spatial mapping of multi-year superimposed ice on the glacier Kongsvegen, Svalbard

    Get PDF
    • …
    corecore