7,935 research outputs found

    Write Channel Model for Bit-Patterned Media Recording

    Full text link
    We propose a new write channel model for bit-patterned media recording that reflects the data dependence of write synchronization errors. It is shown that this model accommodates both substitution-like errors and insertion-deletion errors whose statistics are determined by an underlying channel state process. We study information theoretic properties of the write channel model, including the capacity, symmetric information rate, Markov-1 rate and the zero-error capacity.Comment: 11 pages, 12 figures, journa

    Experiments with metallic and ceramic porous media

    Get PDF
    Work in the area of mechano-caloric phenomena was initiated during 1988 with startup in the Summer 1988 period. The ideal system utilizing He-II super-phenomena is modeled readily, within the frame of thermodynamics energetics, using the concept of an ideal superleak. The real system however uses porous media of non-ideal pore-grain ingredients. The early phase of experimental and related modeling studies is outlined for the time period from Summer 1988 to the end of 1988

    Gaussian Belief Propagation Based Multiuser Detection

    Full text link
    In this work, we present a novel construction for solving the linear multiuser detection problem using the Gaussian Belief Propagation algorithm. Our algorithm yields an efficient, iterative and distributed implementation of the MMSE detector. We compare our algorithm's performance to a recent result and show an improved memory consumption, reduced computation steps and a reduction in the number of sent messages. We prove that recent work by Montanari et al. is an instance of our general algorithm, providing new convergence results for both algorithms.Comment: 6 pages, 1 figures, appeared in the 2008 IEEE International Symposium on Information Theory, Toronto, July 200

    Amorphous Vortex Glass Phase in Strongly Disordered Superconductors

    Full text link
    We introduce a model describing vortices in strongly disordered three-dimensional superconductors. The model focuses on the topological defects, i.e., dislocation lines, in an elastic description of the vortex lattice. The model is studied using Monte Carlo simulations, revealing a glass phase at low temperatures, separated by a continuous phase transition to the high temperature resistive vortex liquid phase. The critical exponents nu ~ 1.3 and eta ~ -0.4 characterizing the transition are obtained from finite size scaling.Comment: 4 pages, 4 figure

    Power at the Pentagon

    Get PDF

    Dedicated Strategies for Triboson Signals from Cascade Decays of Vector Resonances

    Full text link
    New colorless electroweak (EW) charged spin-1 particles with mass of a few TeV arise in numerous extensions of the Standard Model (SM). Decays of such a vector into a pair of SM particles, either fermions or EW bosons, are well studied. Many of these models have an additional scalar, which can lead to (and even dominate in certain parameter regions) a novel decay channel for the heavy vector particles instead - into a SM EW boson and the scalar, which subsequently decays into a SM EW boson pair. In this work, we focus on the scalar being relatively heavy, roughly factor of two lighter than the vector particles, rendering its decay products well separated. Such a cascade decay results in a final state with three isolated bosons. We argue that for this "triboson" signal the existing diboson searches are not quite optimal due to combinatorial ambiguity for three identical bosons, and in addition, due to a relatively small signal cross-section determined by the heaviness of the decaying vector particle. In order to isolate the signal, we demonstrate that tagging all three bosons, followed by use of the full triboson invariant mass distribution as well as that of appropriate subsets of dibosons, is well motivated. We develop these general strategies in detail within the context of a specific class of models that are based on extensions of the standard warped extra-dimensional scenario. We also point out that a similar analysis would apply to models with an enlarged EW gauge sector in four dimensions, even if they involve a different Lorentz structure for the relevant couplings

    Detecting a Boosted Diboson Resonance

    Full text link
    New light scalar particles in the mass range of hundreds of GeV, decaying into a pair of W/ZW/Z bosons can appear in several extensions of the SM. The focus of collider studies for such a scalar is often on its direct production, where the scalar is typically only mildly boosted. The observed W/ZW/Z are therefore well-separated, allowing analyses for the scalar resonance in a standard fashion as a low-mass diboson resonance. In this work we instead focus on the scenario where the direct production of the scalar is suppressed, and it is rather produced via the decay of a significantly heavier (a few TeV mass) new particle, in conjunction with SM particles. Such a process results in the scalar being highly boosted, rendering the W/ZW/Z's from its decay merged. The final state in such a decay is a "fat" jet, which can be either four-pronged (for fully hadronic W/ZW/Z decays), or may be like a W/ZW/Z jet, but with leptons buried inside (if one of the W/ZW/Z decays leptonically). In addition, this fat jet has a jet mass that can be quite different from that of the W/ZW/Z/Higgs/top quark-induced jet, and may be missed by existing searches. In this work, we develop dedicated algorithms for tagging such multi-layered "boosted dibosons" at the LHC. As a concrete application, we discuss an extension of the standard warped extra-dimensional framework where such a light scalar can arise. We demonstrate that the use of these algorithms gives sensitivity in mass ranges that are otherwise poorly constrained.Comment: 33 pages, 13 figure
    corecore