3,059 research outputs found

    Our unique microbial identity.

    Get PDF
    A recent article examines the extent of individual variation in microbial identities and how this might determine disease susceptibility, therapeutic responses and recovery from clinical interventions

    Does the brain listen to the gut?

    Get PDF
    Transplanting gut bacteria from one mouse strain to another can override genetics and change behavior

    Understanding grapevine-microbiome interactions: implications for viticulture industry.

    Get PDF
    Until recently, the analysis of complex communities such as that of the grapevine-microbe holobiont has been limited by the fact that most microbes are not culturable under laboratory conditions (less than 1%). However, metagenomics, the study of the genetic material recovered directly from environmental samples without the need for enrichment or of culturing, has led to open an unprecedented era in the field of microbiology. Importantly, this technological advance has now become so pervasive that it is being regularly applied to explore soils and plants of agricultural interest. Interestingly, many large companies are taking notice, with significant financial investment being used to exploring ways to manipulate the productivity, disease resistance and stress tolerance for crops by influencing the microbiome. To understand which microbes one needs to manipulate to influence this valuable characteristics, we need to sequence the microbiome and capture the genetic and hence functional metabolic information contained therein. For viticulture and other agricultural fields where the crop is also associated to particular flavor properties that may also be manipulated, understanding how the bacteria, fungi and viruses influence the development and hence chemical makeup of the crop is essential

    Recovering complete and draft population genomes from metagenome datasets.

    Get PDF
    Assembly of metagenomic sequence data into microbial genomes is of fundamental value to improving our understanding of microbial ecology and metabolism by elucidating the functional potential of hard-to-culture microorganisms. Here, we provide a synthesis of available methods to bin metagenomic contigs into species-level groups and highlight how genetic diversity, sequencing depth, and coverage influence binning success. Despite the computational cost on application to deeply sequenced complex metagenomes (e.g., soil), covarying patterns of contig coverage across multiple datasets significantly improves the binning process. We also discuss and compare current genome validation methods and reveal how these methods tackle the problem of chimeric genome bins i.e., sequences from multiple species. Finally, we explore how population genome assembly can be used to uncover biogeographic trends and to characterize the effect of in situ functional constraints on the genome-wide evolution

    Returned Solar Max hardware degradation study results

    Get PDF
    The Solar Maximum Repair Mission returned with the replaced hardware that had been in low Earth orbit for over four years. The materials of this returned hardware gave the aerospace community an opportunity to study the realtime effects of atomic oxygen, solar radiation, impact particles, charged particle radiation, and molecular contamination. The results of these studies are summarized

    Not Getting Closer

    Get PDF

    Ghosts

    Get PDF
    • …
    corecore