42 research outputs found
Chlorotyrosine protein adducts are reliable biomarkers of neutrophil-induced cytotoxicity in vivo
INTRODUCTION:A limitation for investigating the pathophysiological role of neutrophils in vivo is the lack of a reliable biomarker for neutrophil cytotoxicity in the liver. Therefore, we investigated if immunohistochemical detection of chlorotyrosine protein adducts can be used as a specific footprint for generation of neutrophil-derived hypochlorous acid in vivo.METHODS:C3Heb/FeJ mice were treated with 100 micrograms/kg endotoxin (ET) alone or in combination with 700 mg/kg galactosamine (Gal/ET). Some animals received additionally two doses of 10 mg/kg of the pancaspase inhibitor Z-VAD-fmk. An antibody against chlorotyrosine was used for the immunohistochemical analysis.RESULTS:At 6 h after Gal/ET, hepatocellular apoptosis was evident without increase in plasma ALT activities. Neutrophils accumulated in sinusoids but there was no evidence for chlorotyrosine staining. At 7 h after Gal/ET, about 54% of the sequestered neutrophils had extravasated, there was extensive necrosis and increased plasma ALT activities. Extensive immunostaining for chlorotyrosine, mainly colocalized with neutrophils, could be observed. Treatment with Z-VAD-fmk eliminated apoptosis, necrosis and the increase in plasma ALT values. Neutrophil extravasation was prevented but the overall number of neutrophils in the liver was unchanged. Chlorotyrosine staining was absent in these samples. After ET alone (7 h), sinusoidal neutrophil accumulation was similar to Gal/ET treatment but there was no apoptosis, neutrophil extravasation, ALT release or chlorotyrosine staining.CONCLUSIONS:Chlorotyrosine staining in liver samples correlated well with evidence of neutrophil-induced liver injury in the endotoxemia model. These results indicate that assessment of chlorotyrosine protein adduct formation by immunohistochemistry could be a useful marker of neutrophil-induced liver cell injury in vivo.This item is part of the UA Faculty Publications collection. For more information this item or other items in the UA Campus Repository, contact the University of Arizona Libraries at [email protected]
Proinsulin Atypical Maturation and Disposal Induces Extensive Defects in Mouse Ins2+/Akita β-Cells
Because of its low relative folding rate and plentiful manufacture in β-cells, proinsulin maintains a homeostatic balance of natively and plentiful non-natively folded states (i.e., proinsulin homeostasis, PIHO) through the integration of maturation and disposal processes. PIHO is susceptible to genetic and environmental influences, and its disorder has been critically linked to defects in β-cells in diabetes. To explore this hypothesis, we performed polymerase chain reaction (PCR), metabolic-labeling, immunoblotting, and histological studies to clarify what defects result from primary disorder of PIHO in model Ins2+/Akita β-cells. We used T antigen-transformed Ins2+/Akita and control Ins2+/+ β-cells established from Akita and wild-type littermate mice. In Ins2+/Akita β-cells, we found no apparent defect at the transcriptional and translational levels to contribute to reduced cellular content of insulin and its precursor and secreted insulin. Glucose response remained normal in proinsulin biosynthesis but was impaired for insulin secretion. The size and number of mature insulin granules were reduced, but the size/number of endoplasmic reticulum, Golgi, mitochondrion, and lysosome organelles and vacuoles were expanded/increased. Moreover, cell death increased, and severe oxidative stress, which manifested as increased reactive oxygen species, thioredoxin-interacting protein, and protein tyrosine nitration, occurred in Ins2+/Akita β-cells and/or islets. These data show the first clear evidence that primary PIHO imbalance induces severe oxidative stress and impairs glucose-stimulated insulin release and β-cell survival as well as producing other toxic consequences. The defects disclosed/clarified in model Ins2+/Akita β-cells further support a role of the genetic and stress-susceptible PIHO disorder in β-cell failure and diabetes
NADPH oxidase-derived oxidant stress is critical for neutrophil cytotoxicity during endotoxemia
Neutrophils can cause liver injury during endotoxemia through generation of reactive oxygen species. However, the enzymatic source of the oxidant stress and the nature of the oxidants generated remain unclear. Therefore, we investigated the involvement of NADPH oxidase in the pathophysiology by using the NADPH oxidase inhibitor diphenyleneiodonium chloride (DPI) in the galactosamine/endotoxin (700 mg/kg Gal: 100 μg/kg ET) model of liver injury. In addition, we measured chlorotyrosine as indicator for hypochlorous acid formation by myeloperoxidase. Gal/ET treatment of male C3HeB/FeJ mice resulted in sinusoidal neutrophil accumulation and parenchymal cell apoptosis (14 ± 3% of cells) at 6 h. At 7 h, 35% of neutrophils had transmigrated. The number of apoptotic cells increased to 25 ± 2%, and the overall number of dead cells was 48 ± 3%; many of them showed the characteristic morphology of necrosis. Hepatocytes, which colocalized with extravasated neutrophils, stained positive for chlorotyrosine and 4-hydroxynonenal (4-HNE) protein adducts. In contrast, animals pretreated with DPI (2.5 mg/kg) were protected against liver injury at 7 h (necrosis = 20 ± 2%). These livers showed little chlorotyrosine or 4-HNE staining, but apoptosis and neutrophil accumulation and extravasation remained unaffected. However, DPI-treated animals showed serious liver injury at 9 h due to sustained apoptosis. The results indicate that NADPH oxidase is responsible for the neutrophil-derived oxidant stress, which includes formation of hypochlorous acid by myeloperoxidase. Thus NADPH oxidase could be a promising therapeutic target to prevent neutrophil-mediated liver injury. However, the long-term benefit of this approach needs to be investigated in models relevant for human liver disease