5,786 research outputs found

    The design of a Space-borne multispectral canopy LiDAR to estimate global carbon stock and gross primary productivity

    Get PDF
    Understanding the dynamics of the global carbon cycle is one of the most challenging issues for the scientific community. The ability to measure the magnitude of terrestrial carbon sinks as well as monitoring the short and long term changes is vital for environmental decision making. Forests form a significant part of the terrestrial biosystem and understanding the global carbon cycle, Above Ground Biomass (AGB) and Gross Primary Productivity (GPP) are critical parameters. Current estimates of AGB and GPP are not adequate to support models of the global carbon cycle and more accurate estimates would improve predictions of the future and estimates of the likely behaviour of these sinks. Various vegetation indices have been proposed for the characterisation of forests including canopy height, canopy area, Normalised Difference Vegetation Index (NDVI) and Photochemical Reflectance Index (PRI). Both NDVI and PRI are obtained from a measure of reflectivity at specific wavelengths and have been estimated from passive measurements. The use of multi-spectral LiDAR to measure NDVI and PRI and their vertical distribution within the forest represents a significant improvement over current techniques. This paper describes an approach to the design of an advanced Multi-Spectral Canopy LiDAR, using four wavelengths for measuring the vertical profile of the canopy simultaneously. It is proposed that the instrument be placed on a satellite orbiting the Earth on a sun synchronous polar orbit to provide samples on a rectangular grid at an approximate separation of 1km with a suitable revisit frequency. The systems engineering concept design will be presented

    A Statistical Treatment of Bioassay Pour Fractions

    Get PDF
    The binomial probability distribution is used to treat the statistics of a microbiological sample that is split into two parts, with only one part evaluated for spore count. One wishes to estimate the total number of spores in the sample based on the counts obtained from the part that is evaluated (pour fraction). Formally, the binomial distribution is recharacterized as a function of the observed counts (successes), with the total number (trials) an unknown. The pour fraction is the probability of success per spore (trial). This distribution must be renormalized in terms of the total number. Finally, the new renormalized distribution is integrated and mathematically inverted to yield the maximum estimate of the total number as a function of a desired level of confidence ( P(<n)=LOC ). Selected results of the indicated numerical calculations are presented. For LOC=0.5, or the likely value, the estimates differ little from the usual calculation: the number of spores counted divided by the pour fraction. The extension to recovery efficiency corrections is also presented. Now the product of recovery efficiency and pour fraction may be small enough that the likely value may be much larger than the usual calculation: the number of spores divided by that product. The use of this analysis would not be limited to microbiological data

    Kolmagorav Complexity, Complexity Cores, and the Distribution of Hardness

    Get PDF
    Problems that are complete for exponential space are provably intractable and known to be exceedingly complex in several technical respects. However, every problem decidable in exponential space is efficiently reducible to every complete problem, so each complete problem must have a highly organized structure. The authors have recently exploited this fact to prove that complete problems are, in two respects, unusually simple for problems in expontential space. Specifically, every complete problem must have unusually small complexity cores and unusually low space-bounded Kolmogorov complexity. It follows that the complete problems form a negligibly small subclass of the problems decidable in exponential space. This paper explains the main ideas of this work

    Dual-purpose self-deliverable lunar surface PV electrical power system

    Get PDF
    A safe haven and work supported PV power systems on the lunar surface will likely be required by NASA in support of the manned outpost scheduled for the post-2000 lunar/Mars exploration and colonization initiative. Initial system modeling and computer analysis shows that the concept is workable and contains no major high risk technology issues which cannot be resolved in the circa 2000 to 2025 timeframe. A specific selection of the best suited type of electric thruster has not been done; the initial modeling was done using an ion thruster, but Rocketdyne must also evaluate arc and resisto-jets before a final design can be formulated. As a general observation, it appears that such a system can deliver itself to the Moon using many system elements that must be transported as dead payload mass in more conventional delivery modes. It further appears that a larger power system providing a much higher safe haven power level is feasible if this delivery system is implemented, perhaps even sufficient to permit resource prospecting and/or lab experimentation. The concept permits growth and can be expanded to include cargo transport such as habitat and working modules. In short, the combined payload could be manned soon after landing and checkout. NASA has expended substantial resources in the development of electric propulsion concepts and hardware that can be applied to a lunar transport system such as described herein. In short, the paper may represent a viable mission on which previous investments play an invaluable role. A more comprehensive technical paper which embodies second generation analysis and system size will be prepared for near-term presentation

    Estimation of stratospheric input to the Arctic troposphere: 7Be and 10Be in aerosols at Alert, Canada

    Get PDF
    Concentrations of 7Be and 210Pb in 2 years of weekly high-volume aerosol samples collected at Alert, Northwest Territories, Canada, showed pronounced seasonal variations. We observed a broad winter peak in 210Pb concentration and a spring peak in 7Be. These peaks were similar in magnitude and duration to previously reported results for a number of stations in the Arctic Basin. Beryllium 10 concentrations (determined only during the first year of this study) were well correlated with those of 7Be; the atom ratio 10Be/7Be was nearly constant at 2.2 throughout the year. This relatively high value of 10Be/7Be indicates that the stratosphere must constitute an important source of both Be isotopes in the Arctic troposphere throughout the year. A simple mixing model based on the small seasonal variations of 10Be/7Be indicates an approximately twofold increase of stratospheric influence in the free troposphere in late summer. The spring maxima in concentrations of both Be isotopes at the surface apparently reflect vertical mixing in rather than stratospheric injections into the troposphere. We have merged the results of the Be-based mixing model with weekly O3 soundings to assess Arctic stratospheric impact on the surface O3 budget at Alert. The resulting estimates indicate that stratospheric inputs can account for a maximum of 10-15% of the 03 at the surface in spring and for less during the rest of the year. These estimates are most uncertain during the winter. The combination of Be isotopic measurements and O3 vertical profiles could allow quantification of the contributions of O3 from the Arctic stratosphere and lower latitude regions to the O3 budget in the Arctic troposphere. Although at present the lack of a quantitative understanding of the temporal variation of O3 lifetime in the Arctic troposphere precludes making definitive calculations, qualitative examples of the power of this approach are given

    The CArG Boxes in the Promoter of the Arabidopsis Floral Organ Identity Gene APETALA3 Mediate Diverse Regulatory Effects

    Get PDF
    APETALA3 is a MADS box gene required for normal development of the petals and stamens in the Arabidopsis flower. Studies in yeast, mammals and plants demonstrate that MADS domain transcription factors bind with high affinity to a consensus sequence called the CArG box. The APETALA3 promoter contains three close matches to the consensus CArG box sequence. To gain insights into the APETALA3 regulatory circuitry, we have analyzed the APETALA3 promoter using AP3::uidA(GUS) fusions. 496 base pairs of APETALA3 promoter sequence 5′ to the transcriptional start directs GUS activity in the same temporal and spatial expression pattern as the APETALA3 RNA and protein in wild-type flowers. A synthetic promoter consisting of three tandem repeats of a 143 base pair sequence directs reporter gene activity exclusively to INTRODUCTION The developmental fate of the organs in the Arabidopsis flower is controlled by the homeotic floral organ identity genes. When the activity of a particular floral organ identity gene is lost due to mutation, there is a homeotic conversion of one organ type to another. For example, the APETALA3 (AP3) and PISTILLATA (PI) genes are necessary for the proper development of petals that develop in the second whorl and stamens that develop in the third whorl of the flower. In ap3 and pi mutants, sepals and carpels develop in positions normally occupied by petals and stamens respectively (Bowman et al., 1989; Jack et al., 1992). Accumulating genetic and molecular evidence suggests that the AP3 and PI proteins together make up the B class organ identity function and these two proteins are sufficient to direct the identity of petals and stamens in the flower. In support of this, ectopic expression of AP3 and/or PI throughout the flower leads to homeotic transformations. Specifically misexpression of AP3 (i.e. 35S::AP3) results in the development of stamens in place of carpels in the fourth whorl and misexpression of PI (i.e. 35S::PI) results in the development of petaloid sepals in place of sepals in the first whorl of the flower (Jack et al., 1994; Krizek and Meyerowitz, 1996). 35S::AP3 leads to fourth whorl organ identity changes because PI is transiently expressed in whorl four during early stages of flower petals and stamens in the flower. We have analyzed the role of the CArG boxes by site-specific mutagenesis and find that the three CArG boxes mediate discrete regulatory effects. Mutations in CArG1 result in a decrease in reporter expression suggesting that CArG1 is the binding site for a positively acting factor or factors. Mutations in CArG2 result in a decrease in reporter expression in petals, but the expression pattern in stamens is unchanged. By contrast, mutations in CArG3 result in an increase in the level of reporter gene activity during early floral stages suggesting that CArG3 is the binding site for a negatively acting factor
    corecore