12 research outputs found

    Migratory birds reinforce local circulation of avian influenza viruses

    Get PDF
    Migratory and resident hosts have been hypothesized to fulfil distinct roles in infectious disease dynamics. However, the contribution of resident and migratory hosts to wildlife infectious disease epidemiology, including that of low pathogenic avian influenza virus (LPAIV) in wild birds, has largely remained unstudied. During an autumn H3 LPAIV epizootic in free-living mallards (Anas platyrhynchos) - a partially migratory species - we identified resident and migratory host populations using stable hydrogen isotope analysis of flight feathers. We investigated the role of migratory and resident hosts separately in the introduction and maintenance of H3 LPAIV during the epizootic. To test this we analysed (i) H3 virus kinship, (ii) temporal patterns in H3 virus prevalence and shedding and (iii) H3-specific antibody prevalence in relation to host migratory strategy. We demonstrate that the H3 LPAIV strain causing the epizootic most likely originated from a single introduction, followed by local clonal expansion. The H3 LPAIV strain was genetically unrelated to H3 LPAIV detected both before and after the epizootic at the study site. During the LPAIV epizootic, migratory mallards were more often infected with H3 LPAIV than residents. Low titres of H3-specific antibodies were detected in only a few residents and migrants. Our results suggest that in this LPAIV epizootic, a single H3 virus was present in resident mallards prior to arrival of migratory mallards followed by a period of virus amplification, importantly associated with the influx of migratory mallards. Thus migrants are suggested to act as local amplifiers rather than the often suggested role as vectors importing novel strains from afar. Our study exemplifies that a multifaceted interdisciplinary approach offers promising opportunities to elucidate the role of migratory and resident hosts in infectious disease dynamics in wildlife

    Vitamin K-antagonistic effect of plastoquinone and ubiquinone derivatives in vitro

    Get PDF
    AbstractDecyl-ubiquinone and decyl-plastoquinone were used as model compounds to test the potential effect of quinone derivatives on two enzymes of the vitamin K cycle in vitro. Substantial inhibition of γ-glutamate carboxylase was found, whereas vitamin K-epoxide reductase was inhibited to a much lesser extent. The inhibitory effect of both decylquinones was eliminated in a time-dependent way by solubilized microsomes, but not by purified carboxylase. Since a wide variety of prenylquinones occur as micronutrients, these results are of potential relevance for the effects of natural quinones in the human diet

    Human land use promotes the abundance and diversity of exotic species on Caribbean islands

    No full text
    Human land use causes major changes in species abundance and composition, yet native and exotic species can exhibit different responses to land use change. Native populations generally decline in human-impacted habitats while exotic species often benefit. In this study, we assessed the effects of human land use on exotic and native reptile diversity, including functional diversity, which relates to the range of habitat use strategies in biotic communities. We surveyed 114 reptile communities from localities that varied in habitat structure and human impact level on two Caribbean islands, and calculated species richness, overall abundance, and evenness for every plot. Functional diversity indices were calculated using published trait data, which enabled us to detect signs of trait filtering associated with impacted habitats. Our results show that environmental variation among sampling plots was explained by two Principal Component Analysis (PCA) ordination axes related to habitat structure (i.e., forest or nonforest) and human impact level (i.e., addition of man-made constructions such as roads and buildings). Several diversity indices were significantly correlated with the two PCA axes, but exotic and native species showed opposing responses. Native species reached the highest abundance in forests, while exotic species were absent in this habitat. Human impact was associated with an increase in exotic abundance and species richness, while native species showed no significant associations. Functional diversity was highest in nonforested environments on both islands, and further increased on St. Martin with the establishment of functionally unique exotic species in nonforested habitat. Habitat structure, rather than human impact, proved to be an important agent for environmental filtering of traits, causing divergent functional trait values across forested and nonforested environments. Our results illustrate the importance of considering various elements of land use when studying its impact on species diversity and the establishment and spread of exotic species

    Contemporizing island biogeography theory with anthropogenic drivers of species richness

    No full text
    Aim: Island biogeography theory states that species richness increases with habitat diversity and decreases with isolation from source pools. However, ecological theory must incorporate effects of human activity to explain contemporary patterns of biodiversity. We contemporized island biogeography theory by conceptualizing island trajectories of how species richness changes over time with accelerating land development and economic trade, which increase extinction and immigration rates, respectively. With this contemporized theory, we then articulate and empirically assess expected relationships of native, introduced and total species richness with natural and anthropogenic metrics of habitat diversity and isolation from source pools. Location: Greater Caribbean region. Time period: Database finalized in 2020. Methods: We built a database of 1,042 native and introduced reptiles and amphibians (herps) for 840 Caribbean islands. For each island, we calculated natural and anthropogenic metrics of island habitat diversity and isolation from source pools and used linear model averaging to assess the expected relationships under the contemporized theory for 15 major herp clades. Results: Natural habitat diversity metrics exhibited positive relationships with native and introduced species richness, strengthening total species richness–area relationships across herp clades. Geographic isolation exhibited negative relationships with native and positive relationships with introduced species richness, weakening total species richness–isolation relationships. Economic area, based on developed land, and economic isolation, based on maritime trade, exhibited negative relationships with native species richness, but positive and negative relationships, respectively, with introduced species richness. Total species richness relationships with these two anthropogenic metrics were strongest in clades with many introduced species. Main conclusions: A contemporized island biogeography theory that includes the effects of land development and economic trade on species extinction and immigration explained current Caribbean herp species richness patterns. As human activity continues to accelerate, the contemporized theory we articulate here will increasingly predict island biogeography of the Anthropocene

    Weak negative associations between avian influenza virus infection and movement behaviour in a key host species, the mallard Anas platyrhynchos

    Get PDF
    Animal movements may contribute to the spread of pathogens. In the case of avian influenza virus, [migratory] birds have been suggested to play a role in the spread of some highly pathogenic strains (e.g. H5N1, H5N8), as well as their low pathogenic precursors which circulate naturally in wild birds. For a better understanding of the emergence and spread of both highly pathogenic (HPAIV) and low pathogenic avian influenza virus (LPAIV), the potential effects of LPAIVs on bird movement need to be evaluated. In a key host species, the mallard Anas platyrhynchos, we tested whether LPAIV infection status affected daily local (< 100 m) and regional (> 100 m) movements by comparing movement behaviour 1) within individuals (captured and sampled at two time points) and 2) between individuals (captured and sampled at one time point). We fitted free-living adult males with GPS loggers throughout the autumn LPAIV infection peak, and sampled them for LPAIV infection at logger deployment and at logger removal on recapture. Within individuals, we found no association between LPAIV infection and daily local and regional movements. Among individuals, daily regional movements of LPAIV infected mallards in the last days of tracking were lower than those of non-infected birds. Moreover, these regional movements of LPAIV infected birds were additionally reduced by poor weather conditions (i.e. increased wind and/or precipitation and lower temperatures). Local movements of LPAIV infected birds in the first days of tracking were higher when temperature decreased. Our study thus demonstrates that bird-assisted dispersal rate of LPAIV may be lower on a regional scale than expected on the basis of the movement behaviour of non-infected birds. Our study underlines the importance of understanding the impact of pathogen infection on host movement in order to assess its potential role in the emergence and spread of infectious diseases

    Biomarker development for neonicotinoid exposure in soil under interaction with the synergist piperonyl butoxide in Folsomia candida

    No full text
    Pesticide toxicity is typically assessed by exposing model organisms to individual compounds and measuring effects on survival and reproduction. These tests are time-consuming, labor-intensive, and do not accurately capture the effect of pesticide mixtures. Moreover, it is unfeasible to screen the nearly infinite combinations of mixtures for synergistic effects on model organisms. Therefore, reliable molecular indicators of pesticide exposure have to be identified, i.e., biomarkers. These biomarkers can form the basis of rapid and economical screening procedures to assess the toxicity of pesticides even under synergistic interaction with other pollutants. In this study, we screened the expression patterns of eight genes for suitability as a biomarker for neonicotinoid exposure in the soil ecotoxicological model Folsomia candida (springtails). Springtails were exposed to the neonicotinoids imidacloprid and thiacloprid either alone or with various levels of piperonyl butoxide (PBO), which inhibits cytochrome P450 enzymes (CYPs): a common point of synergistic interaction between neonicotinoid and other pesticides. First, we confirmed PBO as a potency enhancer for neonicotinoid toxicity to springtail fecundity, and then used it as a tool to confirm biomarker robustness. We identified two genes that are reliably indicative for neonicotinoid exposure even under metabolic inhibition of CYPs by PBO, nicotinic acetylcholine receptor–subunit alpha 1 (nAchR) and sodium-coupled monocarboxylate transporter (SMCT). These results can form the basis for developing high-throughput screening procedures for neonicotinoid exposure in varying mixture compositions

    Development of a research agenda for general practice based on knowledge gaps identified in Dutch guidelines and input from 48 stakeholders

    No full text
    Background: Several funding organizations using different agendas support research in general practice. Topic selection and prioritization are often not coordinated, which may lead to duplication and research waste. Objectives: To develop systematically a national research agenda for general practice involving general practitioners, researchers, patients and other relevant stakeholders in healthcare. Methods: We reviewed knowledge gaps from 90 Dutch general practice guidelines and formulated research questions based on these gaps. In addition, we asked 96 healthcare stakeholders to add research questions relevant for general practice. All research questions were prioritized by practising general practitioners in an online survey (n = 232) and by participants of an invitational conference including general practitioners (n = 48) and representatives of other stakeholders in healthcare (n = 16), e.g. patient organizations and medical specialists. Results: We identified 787 research questions. These were categorized in two ways: according to the chapters of the International Classification for Primary Care (ICPC) and in 12 themes such as common conditions, person-centred care and patient education, collaboration and organization of care. The prioritizing procedure resulted in top 10 lists of research questions for each ICPC chapter and each theme. Conclusion: The process resulted in a widely supported National Research Agenda for General Practice. We encourage both researchers and funding organizations to use this agenda to focus their research on the most relevant issues in general practice and to generate new evidence for the next generation of guidelines and the future of general practice

    Coping with living in the soil : The genome of the parthenogenetic springtail Folsomia candida

    No full text
    Background: Folsomia candida is a model in soil biology, belonging to the family of Isotomidae, subclass Collembola. It reproduces parthenogenetically in the presence of Wolbachia, and exhibits remarkable physiological adaptations to stress. To better understand these features and adaptations to life in the soil, we studied its genome in the context of its parthenogenetic lifestyle. Results: We applied Pacific Bioscience sequencing and assembly to generate a reference genome for F. candida of 221.7 Mbp, comprising only 162 scaffolds. The complete genome of its endosymbiont Wolbachia, was also assembled and turned out to be the largest strain identified so far. Substantial gene family expansions and lineage-specific gene clusters were linked to stress response. A large number of genes (809) were acquired by horizontal gene transfer. A substantial fraction of these genes are involved in lignocellulose degradation. Also, the presence of genes involved in antibiotic biosynthesis was confirmed. Intra-genomic rearrangements of collinear gene clusters were observed, of which 11 were organized as palindromes. The Hox gene cluster of F. candida showed major rearrangements compared to arthropod consensus cluster, resulting in a disorganized cluster. Conclusions: The expansion of stress response gene families suggests that stress defense was important to facilitate colonization of soils. The large number of HGT genes related to lignocellulose degradation could be beneficial to unlock carbohydrate sources in soil, especially those contained in decaying plant and fungal organic matter. Intra- as well as inter-scaffold duplications of gene clusters may be a consequence of its parthenogenetic lifestyle. This high quality genome will be instrumental for evolutionary biologists investigating deep phylogenetic lineages among arthropods and will provide the basis for a more mechanistic understanding in soil ecology and ecotoxicology.</p

    Viewing the Emphasis on State-of-the-Art Magnetic Nanoparticles: Synthesis, Physical Properties, and Applications in Cancer Theranostics

    No full text
    corecore