900 research outputs found

    Pathogen burden, inflammation, proliferation and apoptosis in human in-stent restenosis - Tissue characteristics compared to primary atherosclerosis

    Get PDF
    Pathogenic events leading to in-stent restenosis (ISR) are still incompletely understood. Among others, inflammation, immune reactions, deregulated cell death and growth have been suggested. Therefore, atherectomy probes from 21 patients with symptomatic ISR were analyzed by immunohistochemistry for pathogen burden and compared to primary target lesions from 20 stable angina patients. While cytomegalovirus, herpes simplex virus, Epstein-Barr virus and Helicobacter pylori were not found in ISR, acute and/or persistent chlamydial infection were present in 6/21 of these lesions (29%). Expression of human heat shock protein 60 was found in 8/21 of probes (38%). Indicated by distinct signals of CD68, CD40 and CRP, inflammation was present in 5/21 (24%), 3/21 (14%) and 2/21 (10%) of ISR cases. Cell density of ISR was significantly higher than that of primary lesions ( 977 +/- 315 vs. 431 +/- 148 cells/mm(2); p < 0.001). There was no replicating cell as shown by Ki67 or PCNA. TUNEL+ cells indicating apoptosis were seen in 6/21 of ISR specimens (29%). Quantitative analysis revealed lower expression levels for each intimal determinant in ISR compared to primary atheroma (all p < 0.05). In summary, human ISR at the time of clinical presentation is characterized by low frequency of pathogen burden and inflammation, but pronounced hypercellularity, low apoptosis and absence of proliferation. Copyright (C) 2004 S. Karger AG, Basel

    Early Clinical and Subclinical Visual Evoked Potential and Humphrey's Visual Field Defects in Cryptococcal Meningitis.

    Get PDF
    Cryptococcal induced visual loss is a devastating complication in survivors of cryptococcal meningitis (CM). Early detection is paramount in prevention and treatment. Subclinical optic nerve dysfunction in CM has not hitherto been investigated by electrophysiological means. We undertook a prospective study on 90 HIV sero-positive patients with culture confirmed CM. Seventy-four patients underwent visual evoked potential (VEP) testing and 47 patients underwent Humphrey's visual field (HVF) testing. Decreased best corrected visual acuity (BCVA) was detected in 46.5% of patients. VEP was abnormal in 51/74 (68.9%) right eyes and 50/74 (67.6%) left eyes. VEP P100 latency was the main abnormality with mean latency values of 118.9 (±16.5) ms and 119.8 (±15.7) ms for the right and left eyes respectively, mildly prolonged when compared to our laboratory references of 104 (±10) ms (p<0.001). Subclinical VEP abnormality was detected in 56.5% of normal eyes and constituted mostly latency abnormality. VEP amplitude was also significantly reduced in this cohort but minimally so in the visually unimpaired. HVF was abnormal in 36/47 (76.6%) right eyes and 32/45 (71.1%) left eyes. The predominant field defect was peripheral constriction with an enlarged blind spot suggesting the greater impact by raised intracranial pressure over that of optic neuritis. Whether this was due to papilloedema or a compartment syndrome is open to further investigation. Subclinical HVF abnormalities were minimal and therefore a poor screening test for early optic nerve dysfunction. However, early optic nerve dysfunction can be detected by testing of VEP P100 latency, which may precede the onset of visual loss in CM

    Astrocytes and oligodendrocytes in the thalamus jointly maintain synaptic activity by supplying metabolites

    Get PDF
    Thalamic astrocytes and oligodendrocytes are coupled via gap junctions and form panglial networks. Here, we show that these networks have a key role in energy supply of neurons. Filling an astrocyte or an oligodendrocyte in acute slices with glucose or lactate is sufficient to rescue the decline of stimulation-induced field post-synaptic potential (fPSP) amplitudes during extracellular glucose deprivation (EGD). In mice lacking oligodendroglial coupling, loading an astrocyte with glucose does not rescue the EGD-mediated loss of fPSPs. Monocarboxylate and glucose transporters are required for rescuing synaptic activity during EGD. In mice deficient in astrocyte coupling, filling of an oligodendrocyte with glucose does not rescue fPSPs during EGD. Our results demonstrate that, in the thalamus, astrocytes and oligodendrocytes are jointly engaged in delivering energy substrates for sustaining neuronal activity and suggest that oligodendrocytes exert their effect mainly by assisting astrocytes in metabolite transfer to the postsynapse

    A qualitative study of independent fast food vendors near secondary schools in disadvantaged Scottish neighbourhoods

    Get PDF
    Background: Preventing and reducing childhood and adolescent obesity is a growing priority in many countries. Recent UK data suggest that children in more deprived areas have higher rates of obesity and poorer diet quality than those in less deprived areas. As adolescents spend a large proportion of time in school, interventions to improve the food environment in and around schools are being considered. Nutrient standards for school meals are mandatory in the UK, but many secondary pupils purchase foods outside schools at break or lunchtime that may not meet these standards. Methods: Qualitative interviews were conducted with fast food shop managers to explore barriers to offering healthier menu options. Recruitment targeted independently-owned shops near secondary schools (pupils aged c.12-17) in low-income areas of three Scottish cities. Ten interviews were completed, recorded, and transcribed for analysis. An inductive qualitative approach was used to analyse the data in NVivo 10. Results: Five themes emerged from the data: pride in what is sold; individual autonomy and responsibility; customer demand; profit margin; and neighbourhood context. Interviewees consistently expressed pride in the foods they sold, most of which were homemade. They felt that healthy eating and general wellbeing are the responsibility of the individual and that offering what customers want to eat, not necessarily what they should eat, was the only way to stay in business. Most vendors felt they were struggling to maintain a profit, and that many aspects of the low-income neighbourhood context would make change difficult or impossible. Conclusions: Independent food shops in low-income areas face barriers to offering healthy food choices, and interventions and policies that target the food environment around schools should take the neighbourhood context into consideration

    Clinical spectum of tuberculous optic neuropathy

    Get PDF
    Purpose Tuberculous optic neuropathy may follow infection with Mycobacterium tuberculosis or administration of the bacille Calmette–Guerin. However, this condition is not well described in the ophthalmic literature. Methods Ophthalmologists, identified through professional electronic networks or previous publications, collected standardized clinical data relating to 62 eyes of 49 patients who they had managed with tuberculous optic neuropathy. Results Tuberculous optic neuropathy was most commonly manifested as papillitis (51.6 %), neuroretinitis (14.5 %), and optic nerve tubercle (11.3 %). Uveitis was an additional ocular morbidity in 88.7 % of eyes. In 36.7 % of patients, extraocular tuberculosis was present. The majority of patients (69.4 %) had resided in and/or traveled to an endemic area. Although initial visual acuity was 20/50 or worse in 62.9 % of 62 eyes, 76.7 % of 60 eyes followed for a median of 12 months achieved visual acuities of 20/40 or better. Visual field defects were reported for 46.8 % of eyes, but these defects recovered in 63.2 % of 19 eyes with follow-up. Conclusion Visual recovery from tuberculous optic neuropathy is common, if the diagnosis is recognized and appropriate treatment is instituted. A tuberculous etiology should be considered when evaluating optic neuropathy in persons from endemic areas.Research to Prevent Blindness (unrestricted grant to Casey Eye Institute) provided partial support for this work

    Anisotropic Panglial Coupling Reflects Tonotopic Organization in the Inferior Colliculus

    Get PDF
    Astrocytes and oligodendrocytes in different brain regions form panglial networks and the topography of such networks can correlate with neuronal topography and function. Astrocyte-oligodendrocyte networks in the lateral superior olive (LSO)—an auditory brainstem nucleus—were found to be anisotropic with a preferred orientation orthogonally to the tonotopic axis. We hypothesized that such a specialization might be present in other tonotopically organized brainstem nuclei, too. Thus, we analyzed gap junctional coupling in the center of the inferior colliculus (IC)—another nucleus of the auditory brainstem that exhibits tonotopic organization. In acute brainstem slices obtained from mice, IC networks were traced employing whole-cell patch-clamp recordings of single sulforhodamine (SR) 101-identified astrocytes and concomitant intracellular loading of the gap junction-permeable tracer neurobiotin. The majority of dye-coupled networks exhibited an oval topography, which was preferentially oriented orthogonal to the tonotopic axis. Astrocyte processes showed preferentially the same orientation indicating a correlation between astrocyte and network topography. In addition to SR101-positive astrocytes, IC networks contained oligodendrocytes. Using Na+ imaging, we analyzed the capability of IC networks to redistribute small ions. Na+ bi-directionally diffused between SR101-positive astrocytes and SR101-negative cells—presumably oligodendrocytes—showing the functionality of IC networks. Taken together, our results demonstrate that IC astrocytes and IC oligodendrocytes form functional anisotropic panglial networks that are preferentially oriented orthogonal to the tonotopic axis. Thus, our data indicate that the topographic specialization of glial networks seen in IC and LSO might be a general feature of tonotopically organized auditory brainstem nuclei

    Autoimmune and autoinflammatory mechanisms in uveitis

    Get PDF
    The eye, as currently viewed, is neither immunologically ignorant nor sequestered from the systemic environment. The eye utilises distinct immunoregulatory mechanisms to preserve tissue and cellular function in the face of immune-mediated insult; clinically, inflammation following such an insult is termed uveitis. The intra-ocular inflammation in uveitis may be clinically obvious as a result of infection (e.g. toxoplasma, herpes), but in the main infection, if any, remains covert. We now recognise that healthy tissues including the retina have regulatory mechanisms imparted by control of myeloid cells through receptors (e.g. CD200R) and soluble inhibitory factors (e.g. alpha-MSH), regulation of the blood retinal barrier, and active immune surveillance. Once homoeostasis has been disrupted and inflammation ensues, the mechanisms to regulate inflammation, including T cell apoptosis, generation of Treg cells, and myeloid cell suppression in situ, are less successful. Why inflammation becomes persistent remains unknown, but extrapolating from animal models, possibilities include differential trafficking of T cells from the retina, residency of CD8(+) T cells, and alterations of myeloid cell phenotype and function. Translating lessons learned from animal models to humans has been helped by system biology approaches and informatics, which suggest that diseased animals and people share similar changes in T cell phenotypes and monocyte function to date. Together the data infer a possible cryptic infectious drive in uveitis that unlocks and drives persistent autoimmune responses, or promotes further innate immune responses. Thus there may be many mechanisms in common with those observed in autoinflammatory disorders
    corecore