5 research outputs found

    Unraveling dissipation-related features in magnetic imaging by bimodal magnetic force microscopy

    Full text link
    Magnetic Force Microscopy (MFM) is the principal characterization technique for the study of low-dimensional magnetic materials. Nonetheless, during years, the samples under study was limited to samples in the field of data storage, such as longitudinal hard disk, thin films, or patterned nanostructures. Nowadays, thanks to the advances and developments in the MFM modes and instrumentation, other fields are emerging like skyrmionic structures, 2D materials or biological samples. However, in these experiments artifacts in the magnetic images can have strong impact and need to be carefully verified for a correct interpretation of the results. For that reason, in this paper we will explore new ideas combining the multifrequency modes with the information obtained from the experimental dissipation of energy associated to tip-sample interaction

    Stripe domains in electrodeposited Ni90Fe10 thin films

    Full text link
    Here we have investigated the formation of stripe domains in electrodeposited Ni90Fe10 films, a metallic alloy with relevant magnetoelastic properties. The X-ray diffractometry patterns confirm the deposition of NiFe with an experimental lattice parameter close to the theoretical value. We have analyzed the influence of both magnetic stirring and an applied magnetic field perpendicular to the sample plane on the formation of stripe domains in Ni90Fe10 films. It is observed the characteristic fingerprint of stripe domains, i.e. the transcritical shape in the in-plane hysteresis loops when the electrolyte is not magnetically stirred during electrodeposition. The quality factor reveals a moderate perpendicular magnetic anisotropy which is confirmed by the stripe periodicity inferred by Magnetic Force Microscopy. In particular, stripe domains are only visible by this technique when the sample thickness is well above the theoretical critical thickness for the stripe domains to be formed. Finally, in samples released after being grown in outward bent flexible substrates it has been promoted an induced in-plane magnetoelastic magnetic anisotropy that reduces the perpendicular magnetic anisotropy. The high quality of the samples studied in this work from the magnetoelastic point of view is reflected by the magnetostriction constant of −22 ppm that it has been experimentally inferre

    Improved graphene blisters by ultrahigh pressure sealing

    Full text link
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Applied Materials and Interfaces, copyright © American Chemical Society after peer review and technical editing by the publisher. To acces final work see “Improved Graphene Blisters by Ultrahigh Pressure Sealing”, ACS Applied Materials and Interfaces 12.33 (2020): 37750-37756, 10.1021/acsami.0c09765Graphene is a very attractive material for nanomechanical devices and membrane applications. Graphene blisters based on silicon oxide microcavities are a simple but relevant example of nanoactuators. A drawback of this experimental setup is that gas leakage through the graphene-SiO2 interface contributes significantly to the total leak rate. Here, we study the diffusion of air from pressurized graphene drumheads on SiO2 microcavities and propose a straightforward method to improve the already strong adhesion between graphene and the underlying SiO2 substrate, resulting in reduced leak rates. This is carried out by applying controlled and localized ultrahigh pressure (>10 GPa) with an atomic force microscopy diamond tip. With this procedure, we are able to significantly approach the graphene layer to the SiO2 surface around the drumheads, thus enhancing the interaction between them, allowing us to better seal the graphene-SiO2 interface, which is reflected in up to ∌4 times lower leakage rates. Our work opens an easy way to improve the performance of graphene as a gas membrane on a technological relevant substrate such as SiO2We acknowledge financial support from the Spanish Ministry of Science and Innovation, through the “Marı́ ́ a de Maeztu” Programme for Units of Excellence in R&D (CEX2018- 000805-M), projects PID2019-106268GB, S2018/NMT-451, and FLAG-ERA JTC2017, and the Ramon Areces Foundation. G.L.-P. acknowledges financial support through the “Juan de la Cierva” Fellowship FJCI-2017-3237

    A multi-technique approach to understanding delithiation damage in LiCoO thin films

    Full text link
    We report on the delithiation of LiCoO2 thin films using oxalic acid (C2H2O4) with the goal of understanding the structural degradation of an insertion oxide associated with Li chemical extraction. Using a multi-technique approach that includes synchrotron radiation X-ray diffraction, scanning electron microscopy, micro Raman spectroscopy, photoelectron spectroscopy and conductive atomic force microscopy we reveal the balance between selective Li extraction and structural damage. We identify three different delithiation regimes, related to surface processes, bulk delithiation and damage generation. We find that only a fraction of the grains is affected by the delithiation process, which may create local inhomogeneities. However, the bulk delithiation regime is effective to delithiate the LCO film. All experimental evidence collected indicates that the delithiation process in this regime mimics the behavior of LCO upon electrochemical delithiation. We discard the formation of Co oxalate during the chemical extraction process. In conclusion, the chemical route to Li extraction provides additional opportunities to investigate delithiation while avoiding the complications associated with electrolyte breakdown and simplifying in-situ measurement

    Quantitative mapping of magnetic properties at the nanoscale with bimodal AFM

    Full text link
    [EN] We demonstrate that a force microscope operated in a bimodal configuration enables the mapping of magnetic interactions with high quantitative accuracy and high-spatial resolution (~30 nm). Bimodal AFM operation doubles the number of observables with respect to conventional magnetic force microscopy methods which enables to determine quantitatively in a single processing step several magnetic properties. The theory of bimodal AFM provides analytical expressions for different magnetic force models, in particular those characterized by power-law and exponential distance dependences. Bimodal AFM provides a self-evaluation protocol to test the accuracy of the measurements. The agreement obtained between the experiments and theory for two different magnetic samples support the application of bimodal AFM to map quantitatively long-range magnetic interactions.Financial support from the Ministerio de Ciencia, InnovaciĂłn y Universidades (PID2019-106801GB-I00; PID2019-108075RB-C31; MAT2016-76507-R) and Comunidad de Madrid (SI1/PJI/2019-00055) are acknowledged
    corecore