12 research outputs found

    On the spontaneous stochastic dynamics of a single gene: complexity of the molecular interplay at the promoter

    Get PDF
    International audienceBACKGROUND: Gene promoters can be in various epigenetic states and undergo interactions with many molecules in a highly transient, probabilistic and combinatorial way, resulting in a complex global dynamics as observed experimentally. However, models of stochastic gene expression commonly consider promoter activity as a two-state on/off system. We consider here a model of single-gene stochastic expression that can represent arbitrary prokaryotic or eukaryotic promoters, based on the combinatorial interplay between molecules and epigenetic factors, including energy-dependent remodeling and enzymatic activities. RESULTS: We show that, considering the mere molecular interplay at the promoter, a single-gene can demonstrate an elaborate spontaneous stochastic activity (eg. multi-periodic multi-relaxation dynamics), similar to what is known to occur at the gene-network level. Characterizing this generic model with indicators of dynamic and steady-state properties (including power spectra and distributions), we reveal the potential activity of any promoter and its influence on gene expression. In particular, we can reproduce, based on biologically relevant mechanisms, the strongly periodic patterns of promoter occupancy by transcription factors (TF) and chromatin remodeling as observed experimentally on eukaryotic promoters. Moreover, we link several of its characteristics to properties of the underlying biochemical system. The model can also be used to identify behaviors of interest (eg. stochasticity induced by high TF concentration) on minimal systems and to test their relevance in larger and more realistic systems. We finally show that TF concentrations can regulate many aspects of the stochastic activity with a considerable flexibility and complexity. CONCLUSIONS: This tight promoter-mediated control of stochasticity may constitute a powerful asset for the cell. Remarkably, a strongly periodic activity that demonstrates a complex TF concentration-dependent control is obtained when molecular interactions have typical characteristics observed on eukaryotic promoters (high mobility, functional redundancy, many alternate states/pathways). We also show that this regime results in a direct and indirect energetic cost. Finally, this model can constitute a framework for unifying various experimental approaches. Collectively, our results show that a gene - the basic building block of complex regulatory networks - can itself demonstrate a significantly complex behavior

    Mathematical modelling indicates that lower activity of the haemostatic system in neonates is primarily due to lower prothrombin concentration

    No full text
    Haemostasis is governed by a highly complex system of interacting proteins. Due to the central role of thrombin, thrombin generation and specifically the thrombin generation curve (TGC), is commonly used as an indicator of haemostatic activity. Functional characteristics of the haemostatic system in neonates and children are significantly different compared with adults; at the same time plasma levels of haemostatic proteins vary considerably with age. However, relating one to the other has been difficult, both due to significant inter-individual differences for individuals of similar age and the complexity of the biochemical reactions underlying haemostasis. Mathematical modelling has been very successful at representing the biochemistry of blood clotting. In this study we address the challenge of large inter-individual variability by parameterising the Hockin-Mann model with data from individual patients, across different age groups from neonates to adults. Calculating TGCs for each patient of a specific age group provides us with insight into the variability of haemostatic activity across that age group. From our model we observe that two commonly used metrics for haemostatic activity are significantly lower in neonates than in older patients. Because both metrics are strongly determined by prothrombin and prothrombin levels are considerably lower in neonates we conclude that decreased haemostatic activity in neonates is due to lower prothrombin availability

    Compartmental Analysis and its Manifold Applications to Pharmacokinetics

    No full text
    In this paper, I show how the concept of compartment evolved from the simple dilution of a substance in a physiological volume to its distribution in a network of interconnected spaces. The differential equations describing the fate of a substance in a living being can be solved, qualitatively and quantitatively, with the help of a number of mathematical techniques. A number of parameters of pharmacokinetic interest can be computed from the experimental data; often, the data available are not sufficient to determine some parameters, but it is possible to determine their range

    Genetic Risk For Nicotine Dependence in the Cholinergic System and Activation of the Brain Reward System in Healthy Adolescents

    No full text
    Genetic variation in a genomic region on chromosome 15q25.1, which encodes the alpha5, alpha3, and beta4 subunits of the cholinergic nicotinic receptor genes, confers risk to smoking and nicotine dependence (ND). Neural reward-related responses have previously been identified as important factors in the development of drug dependence involving ND. Applying an imaging genetics approach in two cohorts (N=487; N=478) of healthy non-smoking adolescents, we aimed to elucidate the impact of genome-wide significant smoking-associated variants in the CHRNA5–CHRNA3–CHRNB4 gene cluster on reward-related neural responses in central regions such as the striatum, orbitofrontal and anterior cingulate cortex (ACC), and personality traits related to addiction. In both samples, carriers of the rs578776 GG compared with AG/AA genotype showed a significantly lower neural response to reward outcomes in the right ventral and dorsal ACC but not the striatum or the orbitofrontal cortex. Rs578776 was unrelated to neural reward anticipation or reward magnitude. Significantly higher scores of anxiety sensitivity in GG compared with AG/AA carriers were found only in sample 1. Associations with other personality traits were not observed. Our findings suggest that the rs578776 risk variant influences susceptibility to ND by dampening the response of the ACC to reward feedback, without recruiting the striatum or orbitofrontal cortex during feedback or anticipation. Thus, it seems to have a major role in the processing of and behavioral adaptation to changing reward outcomes
    corecore