51 research outputs found

    Myelin Proteomics: Molecular Anatomy of an Insulating Sheath

    Get PDF
    Fast-transmitting vertebrate axons are electrically insulated with multiple layers of nonconductive plasma membrane of glial cell origin, termed myelin. The myelin membrane is dominated by lipids, and its protein composition has historically been viewed to be of very low complexity. In this review, we discuss an updated reference compendium of 342 proteins associated with central nervous system myelin that represents a valuable resource for analyzing myelin biogenesis and white matter homeostasis. Cataloging the myelin proteome has been made possible by technical advances in the separation and mass spectrometric detection of proteins, also referred to as proteomics. This led to the identification of a large number of novel myelin-associated proteins, many of which represent low abundant components involved in catalytic activities, the cytoskeleton, vesicular trafficking, or cell adhesion. By mass spectrometry-based quantification, proteolipid protein and myelin basic protein constitute 17% and 8% of total myelin protein, respectively, suggesting that their abundance was previously overestimated. As the biochemical profile of myelin-associated proteins is highly reproducible, differential proteome analyses can be applied to material isolated from patients or animal models of myelin-related diseases such as multiple sclerosis and leukodystrophies

    Oligodendrocytes: biology and pathology

    Get PDF
    Oligodendrocytes are the myelinating cells of the central nervous system (CNS). They are the end product of a cell lineage which has to undergo a complex and precisely timed program of proliferation, migration, differentiation, and myelination to finally produce the insulating sheath of axons. Due to this complex differentiation program, and due to their unique metabolism/physiology, oligodendrocytes count among the most vulnerable cells of the CNS. In this review, we first describe the different steps eventually culminating in the formation of mature oligodendrocytes and myelin sheaths, as they were revealed by studies in rodents. We will then show differences and similarities of human oligodendrocyte development. Finally, we will lay out the different pathways leading to oligodendrocyte and myelin loss in human CNS diseases, and we will reveal the different principles leading to the restoration of myelin sheaths or to a failure to do so

    alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid-mediated excitotoxic axonal damage is attenuated in the absence of myelin proteolipid protein

    No full text
    In vivo and in vitro studies have shown that alpha-amino-3hydroxy-5-methylisoxazole-4-propionic acid (AMPA)-receptor-mediated excitotoxicity causes cytoskeletal damage to axons. AMPA/kainate receptors are present on oligodendrocytes and myelin, but currently there is no evidence to suggest that axon cylinders contain AMPA receptors. Proteolipid protein (PLIP) and DM20 are integral membrane proteins expressed by CNS oligodendrocytes and located in compact myelin. Humans and mice lacking normal PLP/DM20 develop axonal swellings and degeneration, suggesting that local interactions between axons and the oligodendrocyte/myelin unit are important for the normal functioning of axons and that PLP/DM20 is involved in this process. To determine whether perturbed glial-axonal interaction affects AMPA-receptor-mediated axonal damage, AMPA (1.5 nmol) was injected into the caudate nucleus of anesthetized Pip knockout and wild-type male mice (n = 13). Twenty-four hours later, axonal damage was detected by using neurofilament 200 (NF 200) immunohistochemistry and neuronal damage detected via histology. AMPA-induced axonal damage, assessed with NF 200 immunohistochemistry, was significantly reduced in Plp knockout mice compared with wildtype mice (P = 0.015). There was no significant difference in the levels of neuronal perikaryal damage between the Plp knockout and wild-type mice. In addition, there was no significant difference in the levels of glutamate receptor subunits GluR1-4 or KA2 in Plp knockout compared with wild-type littermates. The present study suggests that PLP-mediated interactions among oligodendrocytes myelin, and axons may be involved in AMPA-mediate axonal damage. (c) 2006 Wiley-Liss, Inc

    Three or more copies of the proteolipid protein gene PLP1 cause severe Pelizaeus-Merzbacher disease

    No full text
    We describe five boys from different families with an atypically severe form of Pelizaeus-Merzbacher disease (PMD) who have three, and in one case, five copies of the proteolipid protein (PLP1) gene. This is the first report of more than two copies of PLP1 in PMD patients and clearly demonstrates that severe clinical symptoms are associated with increased PLP1 gene dosage. Previously, duplications, deletions and mutations of the PLP1 gene were reported to give rise to this X-linked disorder. Patients with PLP1 duplication are usually classified as having either classical or transitional PMD rather than the more rare severe connatal form. The clinical symptoms of the five patients in this study included lack of stable head control and severe mental retardation, with three having severe paroxysmal disorder and two dying before the first year of life. Gene dosage was determined using interphase FISH (fluorescence in situ hybridization) and the novel approach of multiple ligation probe amplification (MLPA). We found FISH unreliable for dosage detection above the level of a duplication and MLPA to be more accurate in determination of specific copy number. Our finding that three or more copies of the gene give rise to a more severe phenotype is in agreement with observations in transgenic mice where severity of disease increased with Plp1 gene dosage and level of overexpression. The patient with five copies of PLP1 was not more affected than those with a triplication, suggesting that there is possibly a limit to the level of severity or that other genetic factors influence the phenotype. It highlights the significance of PLP1 dosage in CNS myelinogenesis as well as the importance of accurate determination of PLP1 gene copy number in the diagnosis of PMD and carrier detection.</p

    Cerebellar leukoencephalopathy Most likely histiocytosis-related

    No full text
    Background: Histiocytosis, both Langerhans and non-Langerhans cell type, can be associated with cerebellar white matter abnormalities, thought to be paraneoplastic. The associated clinical picture consists of ataxia, spasticity, and cognitive decline. Hormonal dysfunction is frequent. MRI shows cerebellar white matter abnormalities, as well as brainstem and basal ganglia abnormalities. This so-called "neurodegenerative syndrome" may occur years before or during manifest histiocytosis and also years after cure. We discovered similar MRI abnormalities in 13 patients and wondered whether they could have the same syndrome. Methods: We reviewed the clinical and laboratory information of these 13 patients and evaluated their brain MRIs. Seven patients underwent spinal cord MRI. Results: All patients were isolated cases; 10 were male. They had signs of cerebellar and pyramidal dysfunction, behavioral problems, and cognitive decline. MRI showed abnormalities of the cerebellar white matter, brainstem, basal ganglia, and, to a lesser extent, cerebral white matter. Three patients had spinal cord lesions. Three patients had laboratory evidence of hormonal dysfunction. No evidence was found of an underlying metabolic defect. In two patients biopsy of nodular brain lesions revealed histiocytic infiltrates. Conclusions: Considering the striking clinical and MRI similarities between our patients and the patients with this neurodegenerative syndrome in the context of proven histiocytosis, it is likely that they share the same paraneoplastic syndrome, although we cannot exclude a genetic disorder with certainty. The fact that we found histiocytic lesions in two patients substantiates our conclusion. Patients with cerebellar white matter abnormalities should be monitored for histiocytosis. Neurology (R) 2008; 71: 1361-136
    corecore