12 research outputs found

    The cell-wall constituents of Apjohnia laetevirens Harvey

    No full text

    Comparison of wood, fibre and vessel properties of drought-tolerant eucalypts in South Africa

    Get PDF
    Three drought-tolerant eucalypt genotypes have been investigated for a broad spectrum of properties to provide a basis for comparison on their suitability for various end-uses. The genotypes included were a Eucalyptus grandis Ã\u97 E. camaldulensis hybrid, E. gomphocephala and E. cladocalyx, selected based on previous studies that indicated good potential to tolerate arid conditions, reasonably good volume growth and straightness of stems. In this study, information was added on differences between species and parts of stems in growth (volume and biomass) and properties of wood (density and stiffness), fibres (dimensions and microfibril angle) and vessels (size and numbers). We found high wood densities and stiffness values for E. cladocalyx and E. gomphcephala, making them suitable for construction wood. Logs from the mid-part of the stem had the best timber properties, as the butt logs showed the highest microfibril angle and lowest wood stiffness due to longitudinal juvenility. Such juvenility was also to some degree observed for wood density and fibre length. The information gained will be especially helpful for selecting species and processing options for small farm and community plantations for producing higher-value products that may be sold to generate much-needed income as well as for local uses, such as fuelwood and charcoal. © 2017 The Author

    What are the consequences of growth selection on wood density in the French maritime pine breeding programme?

    No full text
    Volume and stem straightness were the main selection criteria for the first two generations of the French maritime pine (Pinus pinaster Ait.) breeding programme. In this article, we investigate the consequences of this selection on wood quality. Wood density, as a predictor of wood quality, is studied both in the breeding populations and in commercial varieties. Phenotypic and genetic correlations between wood density and growth traits are investigated in successive breeding populations with three genetic field experiments of respectively 30, 29 and 12 years old. Correlation estimates were either slightly negative or non-significantly different from zero depending on the test considered. Consequently, a low impact of growth selection on wood quality should be expected in improved seed sources. However, we observed a significant wood density decrease in two improved varieties as compared to unimproved seed sources at age 15. In addition to this first effect on wood density, growth improvement is also expected to reduce the rotation age and thus increase the proportion of juvenile wood, which is known as having a lower density than mature wood. This change was studied and quantified using a growth model. Finally, a wood density decrease reaching up to 6% was predicted in the improved varieties compared to unimproved material, when both the observed decrease in wood density and the predicted increase in juvenile wood proportion were taken into account. Implications for the breeding programme were considered
    corecore