15 research outputs found

    Investigation of Aberrant Splicing Induced by AIPL1 Variations as a Cause of Leber Congenital Amaurosis

    Get PDF
    PURPOSE: Biallelic mutations in AIPL1 cause Leber congenital amaurosis (LCA), a devastating retinal degeneration characterized by the loss or severe impairment of vision within the first few years of life. AIPL1 is highly polymorphic with more than 50 mutations and many more polymorphisms of uncertain pathogenicity identified. As such, it can be difficult to assign disease association of AIPL1 variations. In this study, we investigate suspected disease-associated AIPL1 variations, including nonsynonymous missense and intronic variants to validate their pathogenicity. METHODS: AIPL1 minigenes harboring missense and intronic variations were constructed by amplification of genomic fragments of the human AIPL1 gene. In vitro splice assays were performed to identify the resultant AIPL1 transcripts. RESULTS: We show that all nine of the suspected disease-associated AIPL1 variations investigated induced aberrant pre-mRNA splicing of the AIPL1 gene, and our study is the first to show that AIPL1 missense mutations alter AIPL1 splicing. We reveal that the presumed rare benign variant c.784G>A [p.(G262S)] alters in vitro AIPL1 splicing, thereby validating the disease-association and clarifying the underlying disease mechanism. We also reveal that in-phase exon skipping occurs normally at a low frequency in the retina, but arises abundantly as a consequence of specific AIPL1 variations, suggesting a tolerance threshold for the expression of these alternative transcripts in the retina normally, which is exceeded in LCA. CONCLUSIONS: Our data confirm the disease-association of the AIPL1 variations investigated and reveal for the first time that aberrant splicing of AIPL1 is an underlying mechanism of disease in LCA

    Leber Congenital Amaurosis Associated with AIPL1: Challenges in Ascribing Disease Causation, Clinical Findings, and Implications for Gene Therapy

    Get PDF
    Leber Congenital Amaurosis (LCA) and Early Childhood Onset Severe Retinal Dystrophy are clinically and genetically heterogeneous retinal disorders characterised by visual impairment and nystagmus from birth or early infancy. We investigated the prevalence of sequence variants in AIPL1 in a large cohort of such patients (n = 392) and probed the likelihood of disease-causation of the identified variants, subsequently undertaking a detailed assessment of the phenotype of patients with disease-causing mutations. Genomic DNA samples were screened for known variants in the AIPL1 gene using a microarray LCA chip, with 153 of these cases then being directly sequenced. The assessment of disease-causation of identified AIPL1 variants included segregation testing, assessing evolutionary conservation and in silico predictions of pathogenicity. The chip identified AIPL1 variants in 12 patients. Sequencing of AIPL1 in 153 patients and 96 controls found a total of 46 variants, with 29 being novel. In silico analysis suggested that only 6 of these variants are likely to be disease-causing, indicating a previously unrecognized high degree of polymorphism. Seven patients were identified with biallelic changes in AIPL1 likely to be disease-causing. In the youngest subject, electroretinography revealed reduced cone photoreceptor function, but rod responses were within normal limits, with no measurable ERG in other patients. An increasing degree and extent of peripheral retinal pigmentation and degree of maculopathy was noted with increasing age in our series. AIPL1 is significantly polymorphic in both controls and patients, thereby complicating the establishment of disease-causation of identified variants. Despite the associated phenotype being characterised by early-onset severe visual loss in our patient series, there was some evidence of a degree of retinal structural and functional preservation, which was most marked in the youngest patient in our cohort. This data suggests that there are patients who have a reasonable window of opportunity for gene therapy in childhood

    Towards the understanding the evolution of principle genetic group 2 strains of Mycobacterium tuberculosis.

    No full text
    Please help us populate SUNScholar with the post print version of this article. It can be e-mailed to: [email protected] En Kindergesondhei

    A descriptive investigation of the ultrastructure of fibrin networks in thrombo-embolic ischemic stroke

    No full text
    Stroke is one of the leading causes of death worldwide. Formation of a fibrin clot is controlled by a group of tightly regulated plasma proteases and cofactors and a change in the fibrin fiber formation causes an alteration in clot morphology. This plays an important role during thrombotic events. In the current study we investigated the ultrastructure of fibrin networks from fifteen ischemic stroke patients by using scanning electron microscopy. Clot morphology was investigated with and without the addition of human thrombin to the platelet rich plasma. Previously it was shown that, when studying the ultrastructure of fibrin networks, the addition of thrombin is necessary to form an expansive, fully coagulated layer of fibers. Results from the addition of thrombin to the plasma showed thick, matted fibrin fibers and a net covering some of the major fibers in stroke patients. Typical control morphology with major thick fibers and minor thin fibers could be seen in some areas in the stroke patients. In stroke patients, without the addition of thrombin, a matted fibrin network still formed, indicating that the factors responsible for the abnormal fibrin morphology are present in the circulating plasma and is the cause of the observed matted, layered morphology. This is not present in healthy individuals. From the results obtained we suggest that this changed morphology might be useful in a screening regime to identify the possibility of a stroke or even to follow the progress of stroke patients after treatment.http://link.springer.com/journal/11239hb2017Anatomy and PhysiologyNeurolog
    corecore