5 research outputs found

    Public health performance of sanitation technologies in Tamil Nadu, India: Initial perspectives based on E. coli release

    Get PDF
    Sanitation is intended to reduce the spread and burden of diseases transmitted from excreta. Pathogen reduction from excreta before sludge or effluent discharge to the environment would seem a logical and useful performance indicator for sanitation systems. However, the relative magnitudes of pathogen release from common sanitation technologies are not well understood. We, therefore, investigated the feasibility of performance measurement of different sanitation technologies in Tamil Nadu, India in reducing the release of the pathogen indicator Escherichia coli (E. coli). After conducting users’ surveys and technical assessments of the locally prevalent sanitation systems, we classified them into 7 distinct categories (based on both observed physical characteristic and usage) within a widely-accepted physical typology. Faecal sludge and wastewater samples were collected and analysed for E. coli and total solids from 136 household systems, 24 community systems, and 23 sanitary sewer oveflows. We estimated the average volumetric release rates of wastewater and faecal sludge from the different sanitation technologies. Average daily per capita E. coli release was computed, and used as one indicator of the public health performance of technologies. We found that on-site installations described by owners as “septic systems” included diverse forms of tanks and pits of uncertain performance. We observed a statistically significant difference in the average daily per capita E. coli release from different sanitation technologies (p = 0.00001). Pathogen release from the studied on-site sanitation technologies varied by as much as 5 orders of magnitude from “lined pits” (5.4 Log10 E. coli per person per day) to “overflowing sanitary sewers” and “direct discharge pipes” (10.3–10.5 Log10 E. coli per person per day). Other technologies lay between these extremes, and their performances in E. coli removal also varied significantly, in both statistical and practical terms. Our results suggest that although faecal sludge management along the sanitation service chain is important, sanitation planners of the observed systems (and probably elsewhere) should direct higher priority to proper management of the liquid effluents from these systems to minimize public health hazards. We conclude that (i) the work demonstrates a new and promising approach for estimating the public health performance of differing sanitation technologies, (ii) if E.coli is accepted as an indicator of the public health hazard of releases from sanitation systems, our results strongly suggest that safe containment of excreta for an extended period substantially reduces pathogen numbers and the risk of pathogen release into the environment; and (iii) there are some simple but little-used technical improvements to design and construction of on-site sanitation systems which could significantly reduce the release of pathogens to the environment

    Dissemination of Drinking Water Contamination Data to Consumers: A Systematic Review of Impact on Consumer Behaviors

    Get PDF
    Drinking water contaminated by chemicals or pathogens is a major public health threat in the developing world. Responses to this threat often require water consumers (households or communities) to improve their own management or treatment of water. One approach hypothesized to increase such positive behaviors is increasing knowledge of the risks of unsafe water through the dissemination of water contamination data. This paper reviews the evidence for this approach in changing behavior and subsequent health outcomes.A systematic review was conducted for studies where results of tests for contaminants in drinking water were disseminated to populations whose water supply posed a known health risk. Studies of any design were included where data were available from a contemporaneous comparison or control group. Using multiple sources >14,000 documents were located. Six studies met inclusion criteria (four of arsenic contamination and two of microbiological contamination). Meta-analysis was not possible in most cases due to heterogeneity of outcomes and study designs. Outcomes included water quality, change of water source, treatment of water, knowledge of contamination, and urinary arsenic. Source switching was most frequently reported: of 5 reporting studies 4 report significantly higher rates of switching (26–72%) among those who received a positive test result and a pooled risk difference was calculate for 2 studies (RD = 0.43 [CI0.4.0–0.46] 6–12 months post intervention) suggesting 43% more of those with unsafe wells switched source compared to those with safe wells. Strength of evidence is low since the comparison is between non-equivalent groups. Two studies concerning fecal contamination reported non-significant increases in point-of-use water treatment.Despite the publication of some large cohort studies and some encouraging results the evidence base to support dissemination of contamination data to improve water management is currently equivocal. Rigorous studies on this topic are needed, ideally using common outcome measures
    corecore