402 research outputs found
The diversification of Heliconius butterflies: what have we learned in 150 years?
Research into Heliconius butterflies has made a significant contribution to evolutionary biology. Here, we review our understanding of the diversification of these butterflies, covering recent advances and a vast foundation of earlier work. Whereas no single group of organisms can be sufficient for understanding life's diversity, after years of intensive study, research into Heliconius has addressed a wide variety of evolutionary questions. We first discuss evidence for widespread gene flow between Heliconius species and what this reveals about the nature of species. We then address the evolution and diversity of warning patterns, both as the target of selection and with respect to their underlying genetic basis. The identification of major genes involved in mimetic shifts, and homology at these loci between distantly related taxa, has revealed a surprising predictability in the genetic basis of evolution. In the final sections, we consider the evolution of warning patterns, and Heliconius diversity more generally, within a broader context of ecological and sexual selection. We consider how different traits and modes of selection can interact and influence the evolution of reproductive isolation.RMM is funded by a Junior Research Fellowship at King’s College, Cambridge. KMK is supported by the Balfour Studentship, University of Cambridge, SHMa by a Research Fellowship at St John's College, Cambridge, and SHMo by a Research Fellowship from the Royal Commission for the Exhibition of 1851. Our work on Heliconius has been additionally supported by the Agence Nationale de la Recherche (France), the Biology and Biotechnology Research Council (UK), the British Ecological Society, the European Research Council, the Natural Environment Research Council (UK), and the Smithsonian Tropical Research Institute.This is the author accepted manuscript. The final version is available from Wiley via http://dx.doi.org/10.1111/jeb.1267
HIV Services Utilization in Los Angeles County, California
Recipients of HIV/AIDS prevention services in Los Angeles County California were surveyed in 2004 by 220 HIV prevention service provider staff from 51 agencies funded by the Office of AIDS Programs and Policy. This resulted in 2,102 usable surveys for cluster analysis purposes. This Countywide Risk Assessment Survey assessed demographics, sexual history, substance use, perceptions regarding HIV/AIDS, and use of 18 different services at both the agency administering the survey and at other agencies. The 36 types of service use data were subjected to a cluster analysis that found five clusters. These service pattern clusters differed from each other on proportion HIV positive, HIV testing history, history of abuse, education, type of residence, type of funding, intervention type, and ethnicity. The analysis also suggests that domestic violence services availability and utilization should be examined more thoroughly in the future for HIV infected/affected populations
Aerobic Training in Rats Increases Skeletal Muscle Sphingomyelinase and Serine Palmitoyltransferase Activity, While Decreasing Ceramidase Activity
Sphingolipids are important components of cell membranes that may also serve as cell signaling molecules; ceramide plays a central role in sphingolipid metabolism. The aim of this study was to examine the effect of 5 weeks of aerobic training on key enzymes and intermediates of ceramide metabolism in skeletal muscles. The experiments were carried out on rats divided into two groups: (1) sedentary and (2) trained for 5 weeks (on a treadmill). The activity of serine palmitoyltransferase (SPT), neutral and acid sphingomyelinase (nSMase and aSMase), neutral and alkaline ceramidases (nCDase and alCDase) and the content of sphingolipids was determined in three types of skeletal muscle. We also measured the fasting plasma insulin and glucose concentration for calculating HOMA-IR (homeostasis model assessment) for estimating insulin resistance. We found that the activities of aSMase and SPT increase in muscle in the trained group. These changes were followed by elevation in the content of sphinganine. The activities of both isoforms of ceramidase were reduced in muscle in the trained group. Although the activities of SPT and SMases increased and the activity of CDases decreased, the ceramide content did not change in any of the studied muscle. Although ceramide level did not change, we noticed increased insulin sensitivity in trained animals. It is concluded that training affects the activity of key enzymes of ceramide metabolism but also activates other metabolic pathways which affect ceramide metabolism in skeletal muscles
Local Spatial and Temporal Processes of Influenza in Pennsylvania, USA: 2003–2009
Background: Influenza is a contagious respiratory disease responsible for annual seasonal epidemics in temperate climates. An understanding of how influenza spreads geographically and temporally within regions could result in improved public health prevention programs. The purpose of this study was to summarize the spatial and temporal spread of influenza using data obtained from the Pennsylvania Department of Health's influenza surveillance system. Methodology and Findings: We evaluated the spatial and temporal patterns of laboratory-confirmed influenza cases in Pennsylvania, United States from six influenza seasons (2003-2009). Using a test of spatial autocorrelation, local clusters of elevated risk were identified in the South Central region of the state. Multivariable logistic regression indicated that lower monthly precipitation levels during the influenza season (OR = 0.52, 95% CI: 0.28, 0.94), fewer residents over age 64 (OR = 0.27, 95% CI: 0.10, 0.73) and fewer residents with more than a high school education (OR = 0.76, 95% CI: 0.61, 0.95) were significantly associated with membership in this cluster. In addition, time series analysis revealed a temporal lag in the peak timing of the influenza B epidemic compared to the influenza A epidemic. Conclusions: These findings illustrate a distinct spatial cluster of cases in the South Central region of Pennsylvania. Further examination of the regional transmission dynamics within these clusters may be useful in planning public health influenza prevention programs. © 2012 Stark et al
Diagnostic reliability of magnetic resonance imaging for central nervous system syndromes in systemic lupus erythematosus: a prospective cohort study
<p>Abstract</p> <p>Background</p> <p>Previous studies of magnetic resonance imaging (MRI) as a diagnostic tool for central nervous system (CNS) syndromes in systemic lupus erythematosus (SLE) contained several limitations such as study design, number of enrolled patients, and definition of CNS syndromes. We overcame these problems and statistically evaluated the diagnostic values of abnormal MRI signals and their chronological changes in CNS syndromes of SLE.</p> <p>Methods</p> <p>We prospectively studied 191 patients with SLE, comparing those with (n = 57) and without (n = 134) CNS syndrome. CNS syndromes were characterized using the American College of Rheumatology case definitions.</p> <p>Results</p> <p>Any abnormal MRI signals were more frequently observed in subjects in the CNS group (n = 25) than in the non-CNS group (n = 32) [relative risk (RR), 1.7; 95% confidence interval (CI), 1.1-2.7; <it>p </it>= 0.016] and the positive and negative predictive values for the diagnosis of CNS syndrome were 42% and 76%, respectively. Large abnormal MRI signals (ø ≥ 10 mm) were seen only in the CNS group (n = 7; RR, 3.7; CI, 2.9-4.7; <it>p </it>= 0.0002), whereas small abnormal MRI signals (ø < 10 mm) were seen in both groups with no statistical difference. Large signals always paralleled clinical outcome (<it>p </it>= 0.029), whereas small signals did not (<it>p </it>= 1.000).</p> <p>Conclusions</p> <p>Abnormal MRI signals, which showed statistical associations with CNS syndrome, had insufficient diagnostic values. A large MRI signal was, however, useful as a diagnostic and surrogate marker for CNS syndrome of SLE, although it was less common.</p
The Pioneer Anomaly
Radio-metric Doppler tracking data received from the Pioneer 10 and 11
spacecraft from heliocentric distances of 20-70 AU has consistently indicated
the presence of a small, anomalous, blue-shifted frequency drift uniformly
changing with a rate of ~6 x 10^{-9} Hz/s. Ultimately, the drift was
interpreted as a constant sunward deceleration of each particular spacecraft at
the level of a_P = (8.74 +/- 1.33) x 10^{-10} m/s^2. This apparent violation of
the Newton's gravitational inverse-square law has become known as the Pioneer
anomaly; the nature of this anomaly remains unexplained. In this review, we
summarize the current knowledge of the physical properties of the anomaly and
the conditions that led to its detection and characterization. We review
various mechanisms proposed to explain the anomaly and discuss the current
state of efforts to determine its nature. A comprehensive new investigation of
the anomalous behavior of the two Pioneers has begun recently. The new efforts
rely on the much-extended set of radio-metric Doppler data for both spacecraft
in conjunction with the newly available complete record of their telemetry
files and a large archive of original project documentation. As the new study
is yet to report its findings, this review provides the necessary background
for the new results to appear in the near future. In particular, we provide a
significant amount of information on the design, operations and behavior of the
two Pioneers during their entire missions, including descriptions of various
data formats and techniques used for their navigation and radio-science data
analysis. As most of this information was recovered relatively recently, it was
not used in the previous studies of the Pioneer anomaly, but it is critical for
the new investigation.Comment: 165 pages, 40 figures, 16 tables; accepted for publication in Living
Reviews in Relativit
Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.
The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition
5-Hydroxymethylcytosine is a predominantly stable DNA modification.
5-Hydroxymethylcytosine (hmC) is an oxidation product of 5-methylcytosine which is present in the deoxyribonucleic acid (DNA) of most mammalian cells. Reduction of hmC levels in DNA is a hallmark of cancers. Elucidating the dynamics of this oxidation reaction and the lifetime of hmC in DNA is fundamental to understanding hmC function. Using stable isotope labelling of cytosine derivatives in the DNA of mammalian cells and ultrasensitive tandem liquid-chromatography mass spectrometry, we show that the majority of hmC is a stable modification, as opposed to a transient intermediate. In contrast with DNA methylation, which occurs immediately during replication, hmC forms slowly during the first 30 hours following DNA synthesis. Isotopic labelling of DNA in mouse tissues confirmed the stability of hmC in vivo and demonstrated a relationship between global levels of hmC and cell proliferation. These insights have important implications for understanding the states of chemically modified DNA bases in health and disease.We would like to acknowledge the CRUK CI Flow Cytometry and Histopathology/ISH core facilities for their contributions, David Oxley, Clive d’Santos and Donna Michelle-Smith for their support with mass spectrometry, Xiangang Zou for his help with mES cells and David Tannahill for critical reading of the manuscript. This work was funded by Cancer Research UK (all authors) and the Wellcome Trust Senior Investigator Award (S.B.).This is the accepted manuscript. The final version is available from Nature Chemistry at http://www.nature.com/nchem/journal/vaop/ncurrent/full/nchem.2064.html
Current drinking and health-risk behaviors among male high school students in central Thailand
<p>Abstract</p> <p>Background</p> <p>Alcohol drinking is frequently related to behavioral problems, which lead to a number of negative consequences. This study was to evaluate the characteristics of male high school students who drink, the drinking patterns among them, and the associations between current drinking and other health risk behaviors which focused on personal safety, violence-related behaviors, suicide and sexual behaviors.</p> <p>Method</p> <p>A cross-sectional study was conducted to explore current alcohol drinking and health-risk behaviors among male high school students in central Thailand. Five thousand one hundred and eighty four male students were classified into 2 groups according to drinking in the previous 30 days (yes = 631, no = 4,553). Data were collected by self-administered, anonymous questionnaire which consisted of 3 parts: socio-demographic factors, health-risk behaviors and alcohol drinking behavior during the past year from December 2007 to February 2008.</p> <p>Results</p> <p>The results showed that the percent of current drinking was 12.17. Most of them were 15-17 years (50.21%). Socio-demographic factors such as age, educational level, residence, cohabitants, grade point average (GPA), having a part time job and having family members with alcohol/drug problems were significantly associated with alcohol drinking (p < 0.05). Multiple logistic regression analysis, after adjusting for socio-demographic factors, revealed that health-risk behavioral factors were associated with current alcohol consumption: often drove after drinking alcohol (OR = 3.10, 95% CI = 1.88-5.12), often carried a weapon (OR = 3.51, 95% CI = 2.27-5.42), often got into a physical fight without injury (OR = 3.06, 95% CI = 1.99-4.70), dating violence (OR = 2.58, 95% CI = 1.79-3.71), seriously thought about suicide (OR = 2.07, 95% CI = 1.38-3.11), made a suicide plan (OR = 2.10, 95% CI = 1.43-3.08), ever had sexual intercourse (OR = 5.62, 95% CI = 4.33-7.29), alcohol or drug use before last sexual intercourse (OR = 2.55, 95% CI = 1.44-4.53), and got someone pregnant (OR = 3.99, 95% CI = 1.73-9.25).</p> <p>Conclusions</p> <p>An increased risk of health-risk behaviors, including driving vehicles after drinking, violence-related behaviors, sad feelings and attempted suicide, and sexual behaviors was higher among drinking students that led to significant health problems. Effective intervention strategies (such as a campaign mentioning the adverse health effects and social consequences to the risk groups, and encouraging parental and community efforts to prevent drinking) among adolescents should be implemented to prevent underage drinking and adverse consequences.</p
Seamounts
Definition: Seamounts are literally mountains rising from the seafloor. More specifically, they are “any geographically isolated topographic feature on the seafloor taller than 100 m, including ones whose summit regions may temporarily emerge above sea level, but not including features that are located on continental shelves or that are part of other major landmasses” (Staudigel et al., 2010). The term “guyot” can be used for seamounts having a truncated cone shape with a flat summit produced by erosion at sea level (Hess, 1946), development of carbonate reefs (e.g., Flood, 1999), or partial collapse due to caldera formation (e.g., Batiza et al., 1984). Seamounts <1,000 m tall are sometimes referred to as “knolls” (e.g., Hirano et al., 2008). “Petit spots” are a newly discovered subset of sea knolls confined to the bulge of subducting oceanic plates of oceanic plates seaward of deep-sea trenches (Hirano et al., 2006)
- …