68 research outputs found
The Spin Structure of the Nucleon
We present an overview of recent experimental and theoretical advances in our
understanding of the spin structure of protons and neutrons.Comment: 84 pages, 29 figure
How Noisy Does a Noisy Miner Have to Be? Amplitude Adjustments of Alarm Calls in an Avian Urban โAdapterโ
Background: Urban environments generate constant loud noise, which creates a formidable challenge for many animals relying on acoustic communication. Some birds make vocal adjustments that reduce auditory masking by altering, for example, the frequency (kHz) or timing of vocalizations. Another adjustment, well documented for birds under laboratory and natural field conditions, is a noise level-dependent change in sound signal amplitude (the โLombard effectโ). To date, however, field research on amplitude adjustments in urban environments has focused exclusively on bird song. Methods: We investigated amplitude regulation of alarm calls using, as our model, a successful urban โadapter โ species, the Noisy miner, Manorina melanocephala. We compared several different alarm calls under contrasting noise conditions. Results: Individuals at noisier locations (arterial roads) alarm called significantly more loudly than those at quieter locations (residential streets). Other mechanisms known to improve sound signal transmission in โnoiseโ, namely use of higher perches and in-flight calling, did not differ between site types. Intriguingly, the observed preferential use of different alarm calls by Noisy miners inhabiting arterial roads and residential streets was unlikely to have constituted a vocal modification made in response to sound-masking in the urban environment because the calls involved fell within the main frequency range of background anthropogenic noise. Conclusions: The results of our study suggest that a species, which has the ability to adjust the amplitude of its signals
Mining protein loops using a structural alphabet and statistical exceptionality
<p>Abstract</p> <p>Background</p> <p>Protein loops encompass 50% of protein residues in available three-dimensional structures. These regions are often involved in protein functions, e.g. binding site, catalytic pocket... However, the description of protein loops with conventional tools is an uneasy task. Regular secondary structures, helices and strands, have been widely studied whereas loops, because they are highly variable in terms of sequence and structure, are difficult to analyze. Due to data sparsity, long loops have rarely been systematically studied.</p> <p>Results</p> <p>We developed a simple and accurate method that allows the description and analysis of the structures of short and long loops using structural motifs without restriction on loop length. This method is based on the structural alphabet HMM-SA. HMM-SA allows the simplification of a three-dimensional protein structure into a one-dimensional string of states, where each state is a four-residue prototype fragment, called structural letter. The difficult task of the structural grouping of huge data sets is thus easily accomplished by handling structural letter strings as in conventional protein sequence analysis. We systematically extracted all seven-residue fragments in a bank of 93000 protein loops and grouped them according to the structural-letter sequence, named structural word. This approach permits a systematic analysis of loops of all sizes since we consider the structural motifs of seven residues rather than complete loops. We focused the analysis on highly recurrent words of loops (observed more than 30 times). Our study reveals that 73% of loop-lengths are covered by only 3310 highly recurrent structural words out of 28274 observed words). These structural words have low structural variability (mean RMSd of 0.85 ร
). As expected, half of these motifs display a flanking-region preference but interestingly, two thirds are shared by short (less than 12 residues) and long loops. Moreover, half of recurrent motifs exhibit a significant level of amino-acid conservation with at least four significant positions and 87% of long loops contain at least one such word. We complement our analysis with the detection of statistically over-represented patterns of structural letters as in conventional DNA sequence analysis. About 30% (930) of structural words are over-represented, and cover about 40% of loop lengths. Interestingly, these words exhibit lower structural variability and higher sequential specificity, suggesting structural or functional constraints.</p> <p>Conclusions</p> <p>We developed a method to systematically decompose and study protein loops using recurrent structural motifs. This method is based on the structural alphabet HMM-SA and not on structural alignment and geometrical parameters. We extracted meaningful structural motifs that are found in both short and long loops. To our knowledge, it is the first time that pattern mining helps to increase the signal-to-noise ratio in protein loops. This finding helps to better describe protein loops and might permit to decrease the complexity of long-loop analysis. Detailed results are available at <url>http://www.mti.univ-paris-diderot.fr/publication/supplementary/2009/ACCLoop/</url>.</p
Dissection of a QTL Hotspot on Mouse Distal Chromosome 1 that Modulates Neurobehavioral Phenotypes and Gene Expression
A remarkably diverse set of traits maps to a region on mouse distal chromosome 1 (Chr 1) that corresponds to human Chr 1q21โq23. This region is highly enriched in quantitative trait loci (QTLs) that control neural and behavioral phenotypes, including motor behavior, escape latency, emotionality, seizure susceptibility (Szs1), and responses to ethanol, caffeine, pentobarbital, and haloperidol. This region also controls the expression of a remarkably large number of genes, including genes that are associated with some of the classical traits that map to distal Chr 1 (e.g., seizure susceptibility). Here, we ask whether this QTL-rich region on Chr 1 (Qrr1) consists of a single master locus or a mixture of linked, but functionally unrelated, QTLs. To answer this question and to evaluate candidate genes, we generated and analyzed several gene expression, haplotype, and sequence datasets. We exploited six complementary mouse crosses, and combed through 18 expression datasets to determine class membership of genes modulated by Qrr1. Qrr1 can be broadly divided into a proximal part (Qrr1p) and a distal part (Qrr1d), each associated with the expression of distinct subsets of genes. Qrr1d controls RNA metabolism and protein synthesis, including the expression of โผ20 aminoacyl-tRNA synthetases. Qrr1d contains a tRNA cluster, and this is a functionally pertinent candidate for the tRNA synthetases. Rgs7 and Fmn2 are other strong candidates in Qrr1d. FMN2 protein has pronounced expression in neurons, including in the dendrites, and deletion of Fmn2 had a strong effect on the expression of few genes modulated by Qrr1d. Our analysis revealed a highly complex gene expression regulatory interval in Qrr1, composed of multiple loci modulating the expression of functionally cognate sets of genes
- โฆ