1,626 research outputs found

    Comparison of performance-based measures among native Japanese, Japanese-Americans in Hawaii and Caucasian women in the United States, ages 65 years and over: a cross-sectional study

    Get PDF
    BACKGROUND: Japanese (both in Japan and Hawaii) have a lower incidence of falls and of hip fracture than North American and European Caucasians, but the reasons for these differences are not clear. SUBJECTS AND METHODS: A cross-sectional study. We compared neuromuscular risk factors for falls using performance-based measures (chair stand time, usual and rapid walking speed, and grip strength) among 163 Japanese women in Japan, 681 Japanese-American women in Hawaii and 9403 Caucasian women in the United States aged 65 years and over. RESULTS: After adjusting for age, the Caucasian women required about 40% more time to complete 5 chair stands than either group of Japanese. Walking speed was about 10% slower among Caucasians than native Japanese, whereas Japanese-American women in Hawaii walked about 11% faster than native Japanese. Grip strength was greatest in Japan, which may reflect the rural farming district that this sample was drawn from. Additional adjustment for height, weight or body mass index increased the adjusted means of chair stand time and grip strength among Japanese, but the differences remained significant. CONCLUSIONS: Both native Japanese and Japanese-American women in Hawaii performed better than Caucasians on chair stand time and walking speed tests, and native Japanese had greater grip strength than Japanese in Hawaii and Caucasians. The biological implications of these differences in performance are uncertain, but may be useful in planning future comparisons between populations

    Metastases: the glycan connection

    Get PDF
    An association between protein glycosylation and tumorigenesis has been recognized for over 10 years. Associations linking the importance of glycosylation events to tumor biology, especially the progression to metastatic disease, have been noted over many years, Recently, a mouse model in which Ξ²1,6-N-acetylglucosaminyltransferase V (a rate-limiting enzyme in the N-glycan pathway) has been knocked out, was used to demonstrate the importance of glycosylation in tumor progression. By crossing mice lacking this enzyme with a transgenic mouse model of metastatic breast cancer, metastatic progression of the disease was dramatically reduced. These experiments provide in vivo evidence for the role of N-linked glycosylation in metastatic breast cancer and have significant implications for the development of new treatment strategies

    Prediction of Dengue Incidence Using Search Query Surveillance

    Get PDF
    Improvements in surveillance, prediction of outbreaks and the monitoring of the epidemiology of dengue virus in countries with underdeveloped surveillance systems are of great importance to ministries of health and other public health decision makers who are often constrained by budget or man-power. Google Flu Trends has proven successful in providing an early warning system for outbreaks of influenza weeks before case data are reported. We believe that there is greater potential for this technique for dengue, as the incidence of this pathogen can vary by a factor of ten in some settings, making prediction all the more important in public health planning. In this paper, we demonstrate the utility of Google search terms in predicting dengue incidence in Singapore and Bangkok, Thailand using several regression techniques. Incidence data were provided by the Singapore Ministry of Health and the Thailand Bureau of Epidemiology. We find our models predict incident cases well (correlation greater than 0.8) and periods of high incidence equally well (AUC greater than 0.95). All data and analysis code used in our study are available free online and can be adapted to other settings

    Biomarkers of apoptosis

    Get PDF
    Within the era of molecularly targeted anticancer agents, it has become increasingly important to provide proof of mechanism as early on as possible in the drug development cycle, especially in the clinic. Selective activation of apoptosis is often cited as one of the major goals of cancer chemotherapy. Thus, the present minireview focuses on a discussion of the pros and cons of a variety of methodological approaches to detect different components of the apoptotic cascade as potential biomarkers of programmed cell death. The bulk of the discussion centres on serological assays utilising the technique of ELISA, since here there is an obvious advantage of sampling multiple time points. Potential biomarkers of apoptosis including circulating tumour cells, cytokeratins and DNA nucleosomes are discussed at length. However, accepting that a single biomarker may not have the power to predict proof of concept and patient outcome, it is clear that in the future more emphasis will be placed on technologies that can analyse panels of biomarkers in small volumes of samples. To this end the increased throughput afforded by multiplex ELISA technologies is discussed

    Elemental analysis of lung tissue particles and intracellular iron content of alveolar macrophages in pulmonary alveolar proteinosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pulmonary alveolar proteinosis (PAP) is a rare disease occurred by idiopathic (autoimmune) or secondary to particle inhalation. The in-air microparticle induced X-ray emission (in-air micro-PIXE) system performs elemental analysis of materials by irradiation with a proton microbeam, and allows visualization of the spatial distribution and quantitation of various elements with very low background noise. The aim of this study was to assess the secondary PAP due to inhalation of harmful particles by employing in-air micro-PIXE analysis for particles and intracellular iron in parafin-embedded lung tissue specimens obtained from a PAP patient comparing with normal lung tissue from a non-PAP patient. The iron inside alveolar macrophages was stained with Berlin blue, and its distribution was compared with that on micro-PIXE images.</p> <p>Results</p> <p>The elements composing particles and their locations in the PAP specimens could be identified by in-air micro-PIXE analysis, with magnesium (Mg), aluminum (Al), silicon (Si), phosphorus (P), sulfur (S), scandium (Sc), potassium (K), calcium (Ca), titanium (Ti), chromium (Cr), copper (Cu), manganase (Mn), iron (Fe), and zinc (Zn) being detected. Si was the major component of the particles. Serial sections stained by Berlin blue revealed accumulation of sideromacrophages that had phagocytosed the particles. The intracellular iron content of alveolar macrophage from the surfactant-rich area in PAP was higher than normal lung tissue in control lung by both in-air micro-PIXE analysis and Berlin blue staining.</p> <p>Conclusion</p> <p>The present study demonstrated the efficacy of in-air micro-PIXE for analyzing the distribution and composition of lung particles. The intracellular iron content of single cells was determined by simultaneous two-dimensional and elemental analysis of paraffin-embedded lung tissue sections. The results suggest that secondary PAP is associated with exposure to inhaled particles and accumulation of iron in alveolar macrophages.</p

    Additive scales in degenerative disease - calculation of effect sizes and clinical judgment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The therapeutic efficacy of an intervention is often assessed in clinical trials by scales measuring multiple diverse activities that are added to produce a cumulative global score. Medical communities and health care systems subsequently use these data to calculate pooled effect sizes to compare treatments. This is done because major doubt has been cast over the clinical relevance of statistically significant findings relying on <it>p </it>values with the potential to report chance findings. Hence in an aim to overcome this pooling the results of clinical studies into a meta-analyses with a statistical calculus has been assumed to be a more definitive way of deciding of efficacy.</p> <p>Methods</p> <p>We simulate the therapeutic effects as measured with additive scales in patient cohorts with different disease severity and assess the limitations of an effect size calculation of additive scales which are proven mathematically.</p> <p>Results</p> <p>We demonstrate that the major problem, which cannot be overcome by current numerical methods, is the complex nature and neurobiological foundation of clinical psychiatric endpoints in particular and additive scales in general. This is particularly relevant for endpoints used in dementia research. 'Cognition' is composed of functions such as memory, attention, orientation and many more. These individual functions decline in varied and non-linear ways. Here we demonstrate that with progressive diseases cumulative values from multidimensional scales are subject to distortion by the limitations of the additive scale. The non-linearity of the decline of function impedes the calculation of effect sizes based on cumulative values from these multidimensional scales.</p> <p>Conclusions</p> <p>Statistical analysis needs to be guided by boundaries of the biological condition. Alternatively, we suggest a different approach avoiding the error imposed by over-analysis of cumulative global scores from additive scales.</p

    Human Neural Stem Cells Differentiate and Promote Locomotor Recovery in an Early Chronic Spinal coRd Injury NOD-scid Mouse Model

    Get PDF
    Traumatic spinal cord injury (SCI) results in partial or complete paralysis and is characterized by a loss of neurons and oligodendrocytes, axonal injury, and demyelination/dysmyelination of spared axons. Approximately 1,250,000 individuals have chronic SCI in the U.S.; therefore treatment in the chronic stages is highly clinically relevant. Human neural stem cells (hCNS-SCns) were prospectively isolated based on fluorescence-activated cell sorting for a CD133(+) and CD24(-/lo) population from fetal brain, grown as neurospheres, and lineage restricted to generate neurons, oligodendrocytes and astrocytes. hCNS-SCns have recently been transplanted sub-acutely following spinal cord injury and found to promote improved locomotor recovery. We tested the ability of hCNS-SCns transplanted 30 days post SCI to survive, differentiate, migrate, and promote improved locomotor recovery.hCNS-SCns were transplanted into immunodeficient NOD-scid mice 30 days post spinal cord contusion injury. hCNS-SCns transplanted mice demonstrated significantly improved locomotor recovery compared to vehicle controls using open field locomotor testing and CatWalk gait analysis. Transplanted hCNS-SCns exhibited long-term engraftment, migration, limited proliferation, and differentiation predominantly to oligodendrocytes and neurons. Astrocytic differentiation was rare and mice did not exhibit mechanical allodynia. Furthermore, differentiated hCNS-SCns integrated with the host as demonstrated by co-localization of human cytoplasm with discrete staining for the paranodal marker contactin-associated protein.The results suggest that hCNS-SCns are capable of surviving, differentiating, and promoting improved locomotor recovery when transplanted into an early chronic injury microenvironment. These data suggest that hCNS-SCns transplantation has efficacy in an early chronic SCI setting and thus expands the "window of opportunity" for intervention

    No effect of 24 h severe energy restriction on appetite regulation and ad libitum energy intake in overweight and obese males

    Get PDF
    Background/Objectives: Long-term success of weight loss diets might depend on how the appetite regulatory system responds to energy restriction (ER). This study determined the effect of 24 h severe ER on subjective and hormonal appetite regulation, subsequent ad libitum energy intake and metabolism. Subjects/Methods: In randomised order, eight overweight or obese males consumed a 24 h diet containing either 100% (12105 (1174 kJ; energy balance; EB) or 25% (3039 (295) kJ; ER) of estimated daily energy requirements (EER). An individualised standard breakfast containing 25% of EER (3216 (341) kJ) was consumed the following morning and resting energy expenditure, substrate utilisation and plasma concentrations of acylated ghrelin, glucagon-like peptide-1 (GLP-17–36), glucose-dependant insulinotropic peptide (GIP1–42), glucose, insulin and non-esterified fatty acid (NEFA) were determined for 4 h after breakfast. Ad libitum energy intake was assessed in the laboratory on day 2 and via food records on day 3. Subjective appetite was assessed throughout. Results: Energy intake was not different between trials for day 2 (EB: 14946 (1272) kJ; ER: 15251 (2114) kJ; P=0.623), day 3 (EB: 10580 (2457) kJ; 10812 (4357) kJ; P=0.832) or day 2 and 3 combined (P=0.693). Subjective appetite was increased during ER on day 1 (P0.381). Acylated ghrelin, GLP-17–36 and insulin were not different between trials (P>0.104). Post-breakfast area under the curve (AUC) for NEFA (P<0.05) and GIP1–42 (P<0.01) were greater during ER compared with EB. Fat oxidation was greater (P<0.01) and carbohydrate oxidation was lower (P<0.01) during ER, but energy expenditure was not different between trials (P=0.158). Conclusions: These results suggest that 24 h severe ER does not affect appetite regulation or energy intake in the subsequent 48 h. This style of dieting may be conducive to maintenance of a negative EB by limiting compensatory eating behaviour, and therefore may assist with weight loss

    Phylogenetic Analysis of the Complete Mitochondrial Genome of Madurella mycetomatis Confirms Its Taxonomic Position within the Order Sordariales

    Get PDF
    Background: Madurella mycetomatis is the most common cause of human eumycetoma. The genus Madurella has been characterized by overall sterility on mycological media. Due to this sterility and the absence of other reliable morphological and ultrastructural characters, the taxonomic classification of Madurella has long been a challenge. Mitochondria are of monophyletic origin and mitochondrial genomes have been proven to be useful in phylogenetic analyses. Results: The first complete mitochondrial DNA genome of a mycetoma-causative agent was sequenced using 454 sequencing. The mitochondrial genome of M. mycetomatis is a circular DNA molecule with a size of 45,590 bp, encoding for the small and the large subunit rRNAs, 27 tRNAs, 11 genes encoding subunits of respiratory chain complexes, 2 ATP synthase subunits, 5 hypothetical proteins, 6 intronic proteins including the ribosomal protein rps3. In phylogenetic analyses using amino acid sequences of the proteins involved in respiratory chain complexes and the 2 ATP synthases it appeared that M. mycetomatis clustered together with members of the order Sordariales and that it was most closely related to Chaetomium thermophilum. Analyses of the gene order showed that within the order Sordariales a similar gene order is found. Furthermore also the tRNA order seemed mostly conserved. Conclusion: Phylogenetic analyses of fungal mitochondrial genomes confirmed that M. mycetomatis belongs to the order of Sordariales and that it was most closely related to Chaetomium thermophilum, with which it also shared a comparable gene and tRNA order
    • …
    corecore