55 research outputs found

    Identification of a hypoxia-regulated miRNA signature in bladder cancer and a role for miR-145 in hypoxia-dependent apoptosis

    Get PDF
    Background: Hypoxia leads to the stabilisation of the hypoxia-inducible factor (HIF) transcription factor that drives the expression of target genes including microRNAs (miRNAs). MicroRNAs are known to regulate many genes involved in tumourigenesis. The aim of this study was to identify hypoxia-regulated miRNAs (HRMs) in bladder cancer and investigate their functional significance. Methods: Bladder cancer cell lines were exposed to normoxic and hypoxic conditions and interrogated for the expression of 384 miRNAs by qPCR. Functional studies were carried out using siRNA-mediated gene knockdown and chromatin immunoprecipitations. Apoptosis was quantified by annexin V staining and flow cytometry. Results: The HRM signature for NMI bladder cancer lines includes miR-210, miR-193b, miR-145, miR-125-3p, miR-708 and miR-517a. The most hypoxia-upregulated miRNA was miR-145. The miR-145 was a direct target of HIF-1a and two hypoxia response elements were identified within the promoter region of the gene. Finally, the hypoxic upregulation of miR-145 contributed to increased apoptosis in RT4 cells. Conclusions: We have demonstrated the hypoxic regulation of a number of miRNAs in bladder cancer. We have shown that miR- 145 is a novel, robust and direct HIF target gene that in turn leads to increased cell death in NMI bladder cancer cell lines

    Molecular Systematics of the Deep-Sea Hydrothermal Vent Endemic Brachyuran Family Bythograeidae: A Comparison of Three Bayesian Species Tree Methods

    Get PDF
    Brachyuran crabs of the family Bythograeidae are endemic to deep-sea hydrothermal vents and represent one of the most successful groups of macroinvertebrates that have colonized this extreme environment. Occurring worldwide, the family includes six genera (Allograea, Austinograea, Bythograea, Cyanagraea, Gandalfus, and Segonzacia) and fourteen formally described species. To investigate their evolutionary relationships, we conducted Maximum Likelihood and Bayesian molecular phylogenetic analyses, based on DNA sequences from fragments of three mitochondrial genes (16S rDNA, Cytochrome oxidase I, and Cytochrome b) and three nuclear genes (28S rDNA, the sodiumā€“potassium ATPase a-subunit ā€˜NaKā€™, and Histone H3A). We employed traditional concatenated (i.e., supermatrix) phylogenetic methods, as well as three recently developed Bayesian multilocus methods aimed at inferring species trees from potentially discordant gene trees. We found strong support for two main clades within Bythograeidae: one comprising the members of the genus Bythograea; and the other comprising the remaining genera. Relationships within each of these two clades were partially resolved. We compare our results with an earlier hypothesis on the phylogenetic relationships among bythograeid genera based on morphology. We also discuss the biogeography of the family in the light of our results. Our species tree analyses reveal differences in how each of the three methods weighs conflicting phylogenetic signal from different gene partitions and how limits on the number of outgroup taxa may affect the results

    Sequence and Structure Signatures of Cancer Mutation Hotspots in Protein Kinases

    Get PDF
    Protein kinases are the most common protein domains implicated in cancer, where somatically acquired mutations are known to be functionally linked to a variety of cancers. Resequencing studies of protein kinase coding regions have emphasized the importance of sequence and structure determinants of cancer-causing kinase mutations in understanding of the mutation-dependent activation process. We have developed an integrated bioinformatics resource, which consolidated and mapped all currently available information on genetic modifications in protein kinase genes with sequence, structure and functional data. The integration of diverse data types provided a convenient framework for kinome-wide study of sequence-based and structure-based signatures of cancer mutations. The database-driven analysis has revealed a differential enrichment of SNPs categories in functional regions of the kinase domain, demonstrating that a significant number of cancer mutations could fall at structurally equivalent positions (mutational hotspots) within the catalytic core. We have also found that structurally conserved mutational hotspots can be shared by multiple kinase genes and are often enriched by cancer driver mutations with high oncogenic activity. Structural modeling and energetic analysis of the mutational hotspots have suggested a common molecular mechanism of kinase activation by cancer mutations, and have allowed to reconcile the experimental data. According to a proposed mechanism, structural effect of kinase mutations with a high oncogenic potential may manifest in a significant destabilization of the autoinhibited kinase form, which is likely to drive tumorigenesis at some level. Structure-based functional annotation and prediction of cancer mutation effects in protein kinases can facilitate an understanding of the mutation-dependent activation process and inform experimental studies exploring molecular pathology of tumorigenesis

    The influence of host genetics on erythrocytes and malaria infection: is there therapeutic potential?

    Get PDF

    Relation of vascular endothelial growth factor production to expression and regulation of hypoxia-inducible factor-1 alpha and hypoxia-inducible factor-2 alpha in human bladder tumors and cell lines.

    No full text
    Hypoxia is an important regulator of vascular endothelial growth factor (VEGF) expression, and VEGF is associated with poor prognosis in bladder cancer. To investigate further the mechanisms of VEGF regulation, we examined VEGF expression by mRNA and protein analysis in four human bladder cancer cell lines, showing a progression from well to poorly differentiated phenotypes under varying conditions of confluence and hypoxia (0.1% O(2)) and with chemical mimics of hypoxia. Hypoxia significantly increased VEGF protein expression in all cell lines, although this effect was dependent on the degree of confluence. The superficial bladder cancer cell line RT4 lost hypoxia inducibility at confluence, whereas inducibility was maintained in the invasive cell lines 253J and EJ28. This pattern of VEGF expression in the invasive cell lines correlated with the expression of the transcription factor hypoxia inducible factor-1 alpha (HIF-1 alpha) and with hypoxia-inducible factor-2 alpha (HIF-2 alpha) and in RT4 correlated with a marked reduction in HIF-1 alpha inducibility at confluence. Using the phosphatidylinositol 3-kinase (PI 3-kinase) inhibitor LY 294002, we show that this VEGF hypoxia-inducible pathway regulated by HIF-1 alpha is distinct from a PI 3-kinase-dependent pathway, which regulates basal amounts of VEGF, but does not affect inducibility. Both HIF-1 alpha and HIF-2 alpha protein and mRNA were up-regulated in primary human bladder tumors (n = 12) compared with normal bladder specimens (n = 4), with significant intertumor variation. These results suggest that components of the hypoxia response pathway, including HIF-1 alpha and HIF-2 alpha, are important cofactors in the regulation of VEGF in bladder cancer and are therapeutic targets in this disease

    Expression of hypoxia-inducible factors in human renal cancer: relationship to angiogenesis and to the von Hippel-Lindau gene mutation.

    No full text
    The von Hippel-Lindau tumor suppressor protein acts as the substrate recognition component of a ubiquitin E3 ligase that targets hypoxia-inducible factor (HIF)-alpha subunits for proteolysis. Stabilization of HIF-alpha subunits has been described in VHL-defective cell lines, leading to HIF activation and up-regulation of hypoxia-inducible mRNAs. Mutations of the von Hippel-Lindau tumor suppressor protein are found in most clear cell renal cell carcinomas (CC-RCCs) but not other renal tumors, raising a question about the importance of activation of the HIF pathway in CC-RCC development. To address this question, we have examined the expression of HIF-alpha subunits in 45 primary renal tumors and related this to tumor subtype, the presence of VHL mutations, and measures of angiogenesis. We show that HIF-alpha is up-regulated in the majority of CC-RCCs, and that the pattern of expression is biased toward the HIF-2alpha isoform. Expression of HIF-alpha proteins was associated significantly with up-regulation of VEGF mRNA and protein and increased microvessel density. Up-regulation of HIF-alpha in CC-RCC was found to involve increased mRNA as well as protein expression, suggesting that both VHL-dependent and VHL-independent mechanisms are involved. These results suggest that activation of the HIF pathway is functionally important in CC-RCC development and might provide a new therapeutic target

    An integrative review of systematic reviews related to the management of breathlessness in respiratory illnesses

    Get PDF
    Background: breathlessness is a debilitating and distressing symptom in a wide variety of diseases and still a difficult symptom to manage. An integrative review of systematic reviews of non-pharmacological and pharmacological interventions for breathlessness in non-malignant disease was undertaken to identify the current state of clinical understanding of the management of breathlessness and highlight promising interventions that merit further investigation.Methods: systematic reviews were identified via electronic databases between July 2007 and September 2009. Reviews were included within the study if they reported research on adult participants using either a measure of breathlessness or some other measure of respiratory symptoms.Results: in total 219 systematic reviews were identified and 153 included within the final review, of these 59 addressed non-pharmacological interventions and 94 addressed pharmacological interventions. The reviews covered in excess of 2000 trials. The majority of systematic reviews were conducted on interventions for asthma and COPD, and mainly focussed upon a small number of pharmacological interventions such as corticosteroids and bronchodilators, including beta-agonists. In contrast, other conditions involving breathlessness have received little or no attention and studies continue to focus upon pharmacological approaches. Moreover, although there are a number of non-pharmacological studies that have shown some promise, particularly for COPD, their conclusions are limited by a lack of good quality evidence from RCTs, small sample sizes and limited replication.Conclusions: more research should focus in the future on the management of breathlessness in respiratory diseases other than asthma and COPD. In addition, pharmacological treatments do not completely manage breathlessness and have an added burden of side effects. It is therefore important to focus more research on promising non-pharmacological intervention
    • ā€¦
    corecore