429 research outputs found
Recommended from our members
Drosophila nuclear lamin precursor Dm0 is translated from either of two developmentally regulated mRNA species apparently encoded by a single gene.
A cDNA clone encoding a portion of Drosophila nuclear lamins Dm1 and Dm2 has been identified by screening a lambda-gt11 cDNA expression library using Drosophila lamin-specific monoclonal antibodies. Two different developmentally regulated mRNA species were identified by Northern blot analysis using the initial cDNA as a probe, and full-length cDNA clones, apparently corresponding to each message, have been isolated. In vitro transcription of both full-length cDNA clones in a pT7 transcription vector followed by in vitro translation in wheat germ lysate suggests that both clones encode lamin Dm0, the polypeptide precursor of lamins Dm1 and Dm2. Nucleotide sequence analyses confirm the impression that both cDNA clones code for the identical polypeptide, which is highly homologous with human lamins A and C as well as with mammalian intermediate filament proteins. The two clones differ in their 3'-untranslated regions. In situ hybridization of lamin cDNA clones to Drosophila polytene chromosomes shows only a single locus of hybridization at or near position 25F on the left arm of chromosome 2. Southern blot analyses of genomic DNA are consistent with the notion that a single or only a few highly similar genes encoding Drosophila nuclear lamin Dm0 exist in the genome
Considering the Case for Biodiversity Cycles: Reexamining the Evidence for Periodicity in the Fossil Record
Medvedev and Melott (2007) have suggested that periodicity in fossil
biodiversity may be induced by cosmic rays which vary as the Solar System
oscillates normal to the galactic disk. We re-examine the evidence for a 62
million year (Myr) periodicity in biodiversity throughout the Phanerozoic
history of animal life reported by Rohde & Mueller (2005), as well as related
questions of periodicity in origination and extinction. We find that the signal
is robust against variations in methods of analysis, and is based on
fluctuations in the Paleozoic and a substantial part of the Mesozoic.
Examination of origination and extinction is somewhat ambiguous, with results
depending upon procedure. Origination and extinction intensity as defined by RM
may be affected by an artifact at 27 Myr in the duration of stratigraphic
intervals. Nevertheless, when a procedure free of this artifact is implemented,
the 27 Myr periodicity appears in origination, suggesting that the artifact may
ultimately be based on a signal in the data. A 62 Myr feature appears in
extinction, when this same procedure is used. We conclude that evidence for a
periodicity at 62 Myr is robust, and evidence for periodicity at approximately
27 Myr is also present, albeit more ambiguous.Comment: Minor modifications to reflect final published versio
Recognition of Face Identity and Emotion in Expressive Specific Language Impairment
Objective: To study face and emotion recognition in children with mostly expressive specific language impairment (SLI-E). Subjects and Methods: A test movie to study perception and recognition of faces and mimic-gestural expression was applied to 24 children diagnosed as suffering from SLI-E and an age-matched control group of normally developing children. Results: Compared to a normal control group, the SLI-E children scored significantly worse in both the face and expression recognition tasks with a preponderant effect on emotion recognition. The performance of the SLI-E group could not be explained by reduced attention during the test session. Conclusion: We conclude that SLI-E is associated with a deficiency in decoding non-verbal emotional facial and gestural information, which might lead to profound and persistent problems in social interaction and development. Copyright (C) 2012 S. Karger AG, Base
Bio-Benchmarking of Electronic Nose Sensors
BACKGROUND:Electronic noses, E-Noses, are instruments designed to reproduce the performance of animal noses or antennae but generally they cannot match the discriminating power of the biological original and have, therefore, been of limited utility. The manner in which odorant space is sampled is a critical factor in the performance of all noses but so far it has been described in detail only for the fly antenna. METHODOLOGY:Here we describe how a set of metal oxide (MOx) E-Nose sensors, which is the most commonly used type, samples odorant space and compare it with what is known about fly odorant receptors (ORs). PRINCIPAL FINDINGS:Compared with a fly's odorant receptors, MOx sensors from an electronic nose are on average more narrowly tuned but much more highly correlated with each other. A set of insect ORs can therefore sample broader regions of odorant space independently and redundantly than an equivalent number of MOx sensors. The comparison also highlights some important questions about the molecular nature of fly ORs. CONCLUSIONS:The comparative approach generates practical learnings that may be taken up by solid-state physicists or engineers in designing new solid-state electronic nose sensors. It also potentially deepens our understanding of the performance of the biological system
Functional diversity of marine ecosystems after the Late Permian mass extinction event
Article can be accessed from http://www.nature.com/ngeo/journal/v7/n3/full/ngeo2079.htmlThe Late Permian mass extinction event was the most severe such crisis of the past 500 million years and occurred during an episode of global warming. It is assumed to have had significant ecological impact, but its effects on marine ecosystem functioning are unknown and the patterns of marine recovery are debated. We analysed the fossil occurrences of all known Permian-Triassic benthic marine genera and assigned each to a functional group based on their inferred life habit. We show that despite the selective extinction of 62-74% of marine genera there was no significant loss of functional diversity at the global scale, and only one novel mode of life originated in the extinction aftermath. Early Triassic marine ecosystems were not as ecologically depauperate as widely assumed, which explains the absence of a Cambrian-style Triassic radiation in higher taxa. Functional diversity was, however, significantly reduced in particular regions and habitats, such as tropical reefs, and at these scales recovery varied spatially and temporally, probably driven by migration of surviving groups. Marine ecosystems did not return to their pre-extinction state, however, and radiation of previously subordinate groups such as motile, epifaunal grazers led to greater functional evenness by the Middle Triassic
Geographic range did not confer resilience to extinction in terrestrial vertebrates at the end-Triassic crisis
Rates of extinction vary greatly through geological time, with losses particularly concentrated in mass extinctions. Species duration at other times varies greatly, but the reasons for this are unclear. Geographical range correlates with lineage duration amongst marine invertebrates, but it is less clear how far this generality extends to other groups in other habitats. It is also unclear whether a wide geographical distribution makes groups more likely to survive mass extinctions. Here we test for extinction selectivity amongst terrestrial vertebrates across the end-Triassic event. We demonstrate that terrestrial vertebrate clades with larger geographical ranges were more resilient to extinction than those with smaller ranges throughout the Triassic and Jurassic. However, this relationship weakened with increasing proximity to the end-Triassic mass extinction, breaking down altogether across the event itself. We demonstrate that these findings are not a function of sampling biases; a perennial issue in studies of this kind
Global Taxonomic Diversity of Anomodonts (Tetrapoda, Therapsida) and the Terrestrial Rock Record Across the Permian-Triassic Boundary
The end-Permian biotic crisis (∼252.5 Ma) represents the most severe extinction event in Earth's history. This paper investigates diversity patterns in Anomodontia, an extinct group of therapsid synapsids (‘mammal-like reptiles’), through time and in particular across this event. As herbivores and the dominant terrestrial tetrapods of their time, anomodonts play a central role in assessing the impact of the end-Permian extinction on terrestrial ecosystems. Taxonomic diversity analysis reveals that anomodonts experienced three distinct phases of diversification interrupted by the same number of extinctions, i.e. an end-Guadalupian, an end-Permian, and a mid-Triassic extinction. A positive correlation between the number of taxa and the number of formations per time interval shows that anomodont diversity is biased by the Permian-Triassic terrestrial rock record. Normalized diversity curves indicate that anomodont richness continuously declines from the Middle Permian to the Late Triassic, but also reveals all three extinction events. Taxonomic rates (origination and extinction) indicate that the end-Guadalupian and end-Permian extinctions were driven by increased rates of extinction as well as low origination rates. However, this pattern is not evident at the final decline of anomodont diversity during the Middle Triassic. Therefore, it remains unclear whether the Middle Triassic extinction represents a gradual or abrupt event that is unique to anomodonts or more common among terrestrial tetrapods. The end-Permian extinction represents the most distinct event in terms of decline in anomodont richness and turnover rates
The role of the right temporoparietal junction in perceptual conflict: detection or resolution?
The right temporoparietal junction (rTPJ) is a polysensory cortical area that plays a key role in perception and awareness. Neuroimaging evidence shows activation of rTPJ in intersensory and sensorimotor conflict situations, but it remains unclear whether this activity reflects detection or resolution of such conflicts. To address this question, we manipulated the relationship between touch and vision using the so-called mirror-box illusion. Participants' hands lay on either side of a mirror, which occluded their left hand and reflected their right hand, but created the illusion that they were looking directly at their left hand. The experimenter simultaneously touched either the middle (D3) or the ring finger (D4) of each hand. Participants judged, which finger was touched on their occluded left hand. The visual stimulus corresponding to the touch on the right hand was therefore either congruent (same finger as touch) or incongruent (different finger from touch) with the task-relevant touch on the left hand. Single-pulse transcranial magnetic stimulation (TMS) was delivered to the rTPJ immediately after touch. Accuracy in localizing the left touch was worse for D4 than for D3, particularly when visual stimulation was incongruent. However, following TMS, accuracy improved selectively for D4 in incongruent trials, suggesting that the effects of the conflicting visual information were reduced. These findings suggest a role of rTPJ in detecting, rather than resolving, intersensory conflict
Informant-reported cognitive symptoms that predict amnestic mild cognitive impairment
<p>Abstract</p> <p>Background</p> <p>Differentiating amnestic mild cognitive impairment (aMCI) from normal cognition is difficult in clinical settings. Self-reported and informant-reported memory complaints occur often in both clinical groups, which then necessitates the use of a comprehensive neuropsychological examination to make a differential diagnosis. However, the ability to identify cognitive symptoms that are predictive of aMCI through informant-based information may provide some clinical utility in accurately identifying individuals who are at risk for developing Alzheimer's disease (AD).</p> <p>Methods</p> <p>The current study utilized a case-control design using data from an ongoing validation study of the Alzheimer's Questionnaire (AQ), an informant-based dementia assessment. Data from 51 cognitively normal (CN) individuals participating in a brain donation program and 47 aMCI individuals seen in a neurology practice at the same institute were analyzed to determine which AQ items differentiated aMCI from CN individuals.</p> <p>Results</p> <p>Forward stepwise multiple logistic regression analysis which controlled for age and education showed that 4 AQ items were strong indicators of aMCI which included: repetition of statements and/or questions [OR 13.20 (3.02, 57.66)]; trouble knowing the day, date, month, year, and time [OR 17.97 (2.63, 122.77)]; difficulty managing finances [OR 11.60 (2.10, 63.99)]; and decreased sense of direction [OR 5.84 (1.09, 31.30)].</p> <p>Conclusions</p> <p>Overall, these data indicate that certain informant-reported cognitive symptoms may help clinicians differentiate individuals with aMCI from those with normal cognition. Items pertaining to repetition of statements, orientation, ability to manage finances, and visuospatial disorientation had high discriminatory power.</p
The use of Traditional Medicine by Ghanaians in Canada
Peer reviewedPublisher PD
- …