2,693 research outputs found

    Information-driven 6D SLAM based on ranging vision

    Full text link
    This paper presents a novel solution for building three-dimensional dense maps in unknown and unstructured environment with reduced computational costs. This is achieved by giving the robot the 'intelligence' to select, out of the steadily collected data, the maximally informative observations to be used in the estimation of the robot location and its surroundings. We show that, although the actual evaluation of information gain for each frame introduces an additional computational cost, the overall efficiency is significantly increased by keeping the matrix compact. The noticeable advantage of this strategy is that the continuously gathered data is not heuristically segmented prior to be input to the filter. Quite the opposite, the scheme lends itself to be statistically optimal and is capable of handling large data sets collected at realistic sampling rates. The strategy is generic to any 3D feature-based simultaneous localization and mapping (SLAM) algorithm in the information form, but in the work presented here it is closely coupled to a proposed novel appearance-based sensory package. It consists of a conventional camera and a range imager, which provide range, bearing and elevation inputs to visual salient features as commonly used by three-dimensional point-based SLAM, but it is also particularly well adapted for lightweight mobile platforms such as those commonly employed for Urban Search and Rescue (USAR), chosen here to demonstrate the excellences of the proposed strategy. ©2008 IEEE

    Vision-based SLAM using natural features in indoor environments

    Full text link
    This paper presents a practical approach to solve the simultaneous localization and mapping (SLAM) problem for autonomous mobile platforms by using natural visual landmarks obtained from an stereoscopic camera. It is an attempt to depart from traditional sensors such as laser rangefinders in order to gain the many benefits of nature-inspired information-rich 3D vision sensors. Whilst this makes the system fully observable in that the sensor provide enough information (range and bearing) to compute the full 2D estate of the observed landmarks from a single position, it is also true that depth information is difficult to rely on, particularly on measurements beyond a few meters (in fact the full 3D estate is observable, but here robot motion is constrained to 2D and only the 2D problem is considered). The work presented here is an attempt to overcome such a drawback by tackling the problem from a partially measurable SLAM perspective in that only landmark bearing from one of the cameras is employed in the fusion estimation. Range information estimates from the stereo pair is only used during map building in the landmark initialization phase in order to provide a reasonably accurate initial estimate. An additional benefit of the approach presented here lies in the data association aspect of SLAM. The availability of powerful feature extraction algorithms from the vision community, such as SIFT, permits a more flexible SLAM implementation separated from feature representation, extraction and matching, essentially carrying out matching with minimal recourse to geometry. Simulation results on real data illustrate the validity of the approach. © 2005 IEEE

    Ultrasound hyperthermia induces apoptosis in head and neck squamous cell carcinoma : an in vitro study

    Get PDF
    Hyperthermia is considered an efficient complement in the treatment of head and neck squamous cell carcinoma (HNSCC). Hyperthermia induces cell apoptosis in a temperature- and time-dependent manner. However, the molecular mechanism of hyperthermia remains unclear. The aim of this study was to investigate the mechanism of apoptosis induced by ultrasound hyperthermia in HNSCC cell lines HN-30 and HN-13. We examined the dynamic changes of early apoptosis and secondary necrosis in HN-30 and HN-13 cells treated by hyperthermia at 42°C for 10 min. We further examined mitochondrial membrane potential in vitro by ultrasound hyperthermia for different heating temperatures (38-44°C, 10 min) and heating times (42°C, 10-50 min). After heating by ultrasound at 42°C for 10 min, the apoptosis index achieved its highest level at 8 h after treatment, decreased rapidly and remained constant at a reduced level at 12 h. The level of secondary necrosis increased with the level of early apoptosis but remained at a higher level until 14 h. The level of secondary necrosis correlated with the level of early apoptosis (HN-13: r=0.7523, P=0.0030; HN-30: r=0.6510, P=0.016). The fractions of cells with low mitochondrial membrane potential (??) in the heating-temperature grads group and heating-time grads group decreased significantly over time. Therefore, HN-30 and HN-13 cells developed apoptosis after ultrasound hyperthermia treatment with decreases in the mitochondrial transmembrane potential level. Ultrasound hyperthermia induces apoptosis in HN-30 and HN-13 cells, possibly via the mitochondrial caspase pathway

    Bryum billardieri Schwaegr. against EV71 infection: in vitro and in vivo antiviral effects, identification of molecular mechanisms and active monomers

    Get PDF
    Enterovirus 71 (EV71) commonly causes symptoms such as hand, foot, and mouth disease (HFMD) in infants and children and may lead to neurological disease and even death in severe cases. Appropriate vaccines for the prevention of HFMD are available in the clinic; however, they present different and serious adverse effects that cannot guarantee compliance and efficacy. The purpose of this study was to analyze the potential mechanism of Bryum billardieri Schwaegr. (BBS) against EV71 and analyze its potential active components. A previous in vitro antiviral assay was used to determine the best extraction method for the active site of BBS against EV71, and the results showed that the antiviral activity of BBS was more pronounced in the fraction that was extracted by aqueous extraction and alcoholic precipitation and then obtained by purification on a silica gel column (dichloromethane:methanol = 0:100). In addition, the therapeutic effects of BBS on EV71-infected mice were further investigated by in vivo pharmacological experiments. BBS reduced the lung index, viral titer, and degree of EV71-induced lung, brain, and skeletal muscle damage. The mechanism of anti-EV71 activity of BBS was also investigated by using ELISA and qRT-PCR, and it was found that BBS exerted its action mainly by regulating the expression of TLR3, TLR4, TNF-α, IL-2, and IFN-γ by modulating the activation of NF-κB and JAK2/STAT1 signaling pathways. Finally, the chemical structures of the active monomers in BBS were determined by using UPLC-MS and NMR techniques. The study revealed that one of the monomers on which BBS exerts its antiviral activity is saponarin. In conclusion, the results of this study suggest that BBS is considered a natural anti-EV71 product with enormous potential, and saponarin would be its non-negligible active monomer

    Isoforms of U1-70k control subunit dynamics in the human spliceosomal U1 snRNP

    Get PDF
    Most human protein-encoding genes contain multiple exons that are spliced together, frequently in alternative arrangements, by the spliceosome. It is established that U1 snRNP is an essential component of the spliceosome, in human consisting of RNA and ten proteins, several of which are post- translationally modified and exist as multiple isoforms. Unresolved and challenging to investigate are the effects of these post translational modifications on the dynamics, interactions and stability of the particle. Using mass spectrometry we investigate the composition and dynamics of the native human U1 snRNP and compare native and recombinant complexes to isolate the effects of various subunits and isoforms on the overall stability. Our data reveal differential incorporation of four protein isoforms and dynamic interactions of subunits U1-A, U1-C and Sm-B/B’. Results also show that unstructured post- ranslationally modified C-terminal tails are responsible for the dynamics of Sm-B/B’ and U1-C and that their interactions with the Sm core are controlled by binding to different U1-70k isoforms and their phosphorylation status in vivo. These results therefore provide the important functional link between proteomics and structure as well as insight into the dynamic quaternary structure of the native U1 snRNP important for its function.This work was funded by: BBSRC (OVM), BBSRC and EPSRC (HH and NM), EU Prospects (HH), European Science Foundation (NM), the Royal Society (CVR), and fellowship from JSPS and HFSP (YM and DAPK respectively)

    Turbulence and galactic structure

    Full text link
    Interstellar turbulence is driven over a wide range of scales by processes including spiral arm instabilities and supernovae, and it affects the rate and morphology of star formation, energy dissipation, and angular momentum transfer in galaxy disks. Star formation is initiated on large scales by gravitational instabilities which control the overall rate through the long dynamical time corresponding to the average ISM density. Stars form at much higher densities than average, however, and at much faster rates locally, so the slow average rate arises because the fraction of the gas mass that forms stars at any one time is low, ~10^{-4}. This low fraction is determined by turbulence compression, and is apparently independent of specific cloud formation processes which all operate at lower densities. Turbulence compression also accounts for the formation of most stars in clusters, along with the cluster mass spectrum, and it gives a hierarchical distribution to the positions of these clusters and to star-forming regions in general. Turbulent motions appear to be very fast in irregular galaxies at high redshift, possibly having speeds equal to several tenths of the rotation speed in view of the morphology of chain galaxies and their face-on counterparts. The origin of this turbulence is not evident, but some of it could come from accretion onto the disk. Such high turbulence could help drive an early epoch of gas inflow through viscous torques in galaxies where spiral arms and bars are weak. Such evolution may lead to bulge or bar formation, or to bar re-formation if a previous bar dissolved. We show evidence that the bar fraction is about constant with redshift out to z~1, and model the formation and destruction rates of bars required to achieve this constancy.Comment: in: Penetrating Bars through Masks of Cosmic Dust: The Hubble Tuning Fork strikes a New Note, Eds., K. Freeman, D. Block, I. Puerari, R. Groess, Dordrecht: Kluwer, in press (presented at a conference in South Africa, June 7-12, 2004). 19 pgs, 5 figure

    A new multicompartmental reaction-diffusion modeling method links transient membrane attachment of E. coli MinE to E-ring formation

    Get PDF
    Many important cellular processes are regulated by reaction-diffusion (RD) of molecules that takes place both in the cytoplasm and on the membrane. To model and analyze such multicompartmental processes, we developed a lattice-based Monte Carlo method, Spatiocyte that supports RD in volume and surface compartments at single molecule resolution. Stochasticity in RD and the excluded volume effect brought by intracellular molecular crowding, both of which can significantly affect RD and thus, cellular processes, are also supported. We verified the method by comparing simulation results of diffusion, irreversible and reversible reactions with the predicted analytical and best available numerical solutions. Moreover, to directly compare the localization patterns of molecules in fluorescence microscopy images with simulation, we devised a visualization method that mimics the microphotography process by showing the trajectory of simulated molecules averaged according to the camera exposure time. In the rod-shaped bacterium _Escherichia coli_, the division site is suppressed at the cell poles by periodic pole-to-pole oscillations of the Min proteins (MinC, MinD and MinE) arising from carefully orchestrated RD in both cytoplasm and membrane compartments. Using Spatiocyte we could model and reproduce the _in vivo_ MinDE localization dynamics by accounting for the established properties of MinE. Our results suggest that the MinE ring, which is essential in preventing polar septation, is largely composed of MinE that is transiently attached to the membrane independently after recruited by MinD. Overall, Spatiocyte allows simulation and visualization of complex spatial and reaction-diffusion mediated cellular processes in volumes and surfaces. As we showed, it can potentially provide mechanistic insights otherwise difficult to obtain experimentally

    Proteomics: in pursuit of effective traumatic brain injury therapeutics

    Get PDF
    Effective traumatic brain injury (TBI) therapeutics remain stubbornly elusive. Efforts in the field have been challenged by the heterogeneity of clinical TBI, with greater complexity among underlying molecular phenotypes than initially conceived. Future research must confront the multitude of factors comprising this heterogeneity, representing a big data challenge befitting the coming informatics age. Proteomics is poised to serve a central role in prescriptive therapeutic development, as it offers an efficient endpoint within which to assess post-TBI biochemistry. We examine rationale for multifactor TBI proteomic studies and the particular importance of temporal profiling in defining biochemical sequences and guiding therapeutic development. Lastly, we offer perspective on repurposing biofluid proteomics to develop theragnostic assays with which to prescribe, monitor and assess pharmaceutics for improved translation and outcome for TBI patients

    Therapeutic Targeting of STAT3 (Signal Transducers and Activators of Transcription 3) Pathway Inhibits Experimental Autoimmune Uveitis

    Get PDF
    Mice with targeted deletion of STAT3 in CD4+ T-cells do not develop experimental autoimmune uveitis (EAU) or experimental autoimmune encephalomyelitis (EAE), in part, because they cannot generate pathogenic Th17 cells. In this study, we have used ORLL-NIH001, a small synthetic compound that inhibits transcriptional activity of STAT3, to ameliorate EAU, an animal model of human posterior uveitis. We show that by attenuating inflammatory properties of uveitogenic lymphocytes, ORLL-NIH001 inhibited the recruitment of inflammatory cells into the retina during EAU and prevented the massive destruction of the neuroretina caused by pro-inflammatory cytokines produced by the autoreactive lymphocytes. Decrease in disease severity observed in ORLL-NIH001-treated mice, correlated with the down-regulation of α4β1 and α4β7 integrin activation and marked reduction of CCR6 and CXCR3 expression, providing a mechanism by which ORLL-NIH001 mitigated EAU. Furthermore, we show that ORLL-NIH001 inhibited the expansion of human Th17 cells, underscoring its potential as a drug for the treatment of human uveitis. Two synthetic molecules that target the Th17 lineage transcription factors, RORγt and RORα, have recently been suggested as potential drugs for inhibiting Th17 development and treating CNS inflammatory diseases. However, inhibiting STAT3 pathways completely blocks Th17 development, as well as, prevents trafficking of inflammatory cells into CNS tissues, making STAT3 a more attractive therapeutic target. Thus, use of ORLL-NIH001 to target the STAT3 transcription factor, thereby antagonizing Th17 expansion and expression of proteins that mediate T cell chemotaxis, provides an attractive new therapeutic approach for treatment of posterior uveitis and other CNS autoimmune diseases mediated by Th17 cells
    corecore